Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
基本信息
- 批准号:10288742
- 负责人:
- 金额:$ 23.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAcousticsAcute Lung InjuryAddressBiologicalBiological AssayBiomanufacturingCardiovascular DiseasesCardiovascular systemCellsClinicDevelopmentDevice DesignsDevicesDrug CarriersElementsEncapsulatedFiltrationFosteringGenerationsHarvestIn SituLasersLiposomesLungLung diseasesMethodsMicroRNAsMicrodialysisMicrofluidic MicrochipsMicrofluidicsMiniaturizationModalityModelingMolecular Sieve ChromatographyMyocardial InfarctionMyocardial IschemiaNatural regenerationPatient CarePatientsPerformancePharmaceutical PreparationsPositioning AttributePreparationProcessProductionProteinsPulmonary FibrosisReperfusion InjuryReportingResearch PersonnelResourcesRouteSafetySchemeSmall Interfering RNASourceStrokeSystemTechniquesTechnologyTherapeuticTherapeutic AgentsTherapeutic EffectTimeTranslationsUltracentrifugationVesicleWritingbaseclinical translationcostdesigndrug developmentextracellular vesiclesimprovedinterestlung injurymesenchymal stromal cellmicrodevicenanoscalenanovesiclenovel strategiesnovel therapeuticspH gradientparticlepre-clinicalpreclinical efficacyproduct developmentprototyperepairedsmall moleculesuccesstherapeutic developmentwound healing
项目摘要
PROJECT SUMMARY
Next-generation therapeutics based on extracellular vesicles (EVs) as biologically-derived drug carriers have
emerged as a highly promising route to the treatment of a wide range of cardiovascular and respiratory diseases.
Despite the broad interest in EV-based drug development, it is increasingly clear that existing methods for
preparing therapeutic EVs suffer from a number of constraints that present a significant barrier to clinical
translation. In addition to low throughput, long processing times, and labor-intensive operational steps,
established separation methods suffer from poor separation efficiencies that result in vesicle loss, size bias, and
co-elution of soluble proteins that contaminate the resulting nanovesicle drug. This latter challenge is of particular
concern, as the presence of soluble proteins complicates interpretations of efficacy and safety. An additional
issue is that while microRNAs (miRNAs) encapsulated within EVs represent a key component conferring
therapeutic effect, the intrinsic concentration of miRNA in EVs is extremely low. As a result, effective EV therapies
require that exogenous miRNA be loaded into the vesicles to increase potency. While a number of EV cargo
loading techniques have been developed, many of these methods demand to introduction of external electrical
or acoustic energy that can damage the vesicles and their cargo. Furthermore, existing EV separation and
loading techniques require multiple processing steps that are not inherently scalable, increasing development
cost and time, and presenting a practical challenge for moving EV therapeutics beyond the preclinical stage. In
this R21 project, we propose a new scalable approach to EV separation and drug loading that is compatible with
the needs for clinical translation, addressing a significant bottleneck in EV biomanufacturing and enabling a
single-step streamlined workflow for the preparation of high potency EV therapeutics. The proposed technology
consists of a single device integrating efficient size-based EV separation with drug loading into a scalable,
automated, and self-contained process. The platform will leverage a miniature hydrocyclone technology
previously developed by our team that has the potential to isolate EVs in the 30-150 nm range in a passive flow-
through microfluidic chip. An array of hydrocyclones operating at high flow rates on the order of 1 mL/min will be
combined with integrated microfluidic counterflow microdialysis elements to implement a proven pH-gradient-
based loading method developed by our group to control EV cargo encapsulation. The scalable platform will
enable in-line loading of purified EVs from any cell or biofluid source, using a simple workflow expected to
significantly reduce therapeutic EV processing time and cost. The resulting system is further expected to improve
vesicle purity and cargo loading efficiency, supporting the development and translation of a new class of EV
therapeutics with the potential to impact treatment of a broad range of cardiovascular and respiratory diseases.
项目概要
基于细胞外囊泡(EV)作为生物源药物载体的下一代疗法已经
成为治疗多种心血管和呼吸系统疾病的一种非常有前途的途径。
尽管人们对基于 EV 的药物开发产生了广泛的兴趣,但越来越明显的是,现有的方法
制备治疗性 EV 受到许多限制,这对临床应用构成了重大障碍
翻译。除了吞吐量低、处理时间长和劳动密集型操作步骤之外,
现有的分离方法存在分离效率差的问题,导致囊泡损失、尺寸偏差和
污染所得纳米囊泡药物的可溶性蛋白质的共洗脱。后一个挑战具有特殊意义
令人担忧的是,可溶性蛋白质的存在使功效和安全性的解释变得复杂。额外的
问题是,虽然封装在 EV 中的 microRNA (miRNA) 是赋予
达到治疗效果时,EV 中 miRNA 的内在浓度极低。因此,有效的 EV 疗法
需要将外源 miRNA 加载到囊泡中以增加效力。虽然一些电动汽车货运
加载技术已经开发出来,其中许多方法需要引入外部电气
或声能会损坏囊泡及其货物。此外,现有的电动汽车分离和
加载技术需要多个处理步骤,这些步骤本身并不可扩展,从而增加了开发速度
成本和时间,并对 EV 疗法超越临床前阶段提出了实际挑战。在
在这个 R21 项目中,我们提出了一种新的可扩展的 EV 分离和药物装载方法,该方法与
临床转化的需求,解决电动汽车生物制造的重大瓶颈并实现
用于制备高效 EV 疗法的单步简化工作流程。提议的技术
由单个设备组成,将基于尺寸的有效 EV 分离与药物装载集成到可扩展的、
自动化且独立的流程。该平台将利用微型水力旋流器技术
我们的团队之前开发的该技术有潜力在被动流中隔离 30-150 nm 范围内的 EV
通过微流控芯片。一系列以 1 mL/min 量级的高流速运行的水力旋流器将
与集成微流体逆流微透析元件相结合,可实现经过验证的 pH 梯度
我们小组开发的基于装载方法来控制电动汽车货物封装。可扩展的平台将
使用简单的工作流程,能够在线加载来自任何细胞或生物流体来源的纯化 EV
显着减少治疗性 EV 处理时间和成本。由此产生的系统有望进一步改进
囊泡纯度和货物装载效率,支持新型电动汽车的开发和转化
可能影响广泛心血管和呼吸系统疾病治疗的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Don L DeVoe其他文献
Don L DeVoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Don L DeVoe', 18)}}的其他基金
Elucidating Airborne SARS-CoV-2 Infectivity at Single Aerosol Resolution
在单一气溶胶分辨率下阐明空气传播的 SARS-CoV-2 感染性
- 批准号:
10239915 - 财政年份:2022
- 资助金额:
$ 23.01万 - 项目类别:
Microcyclone arrays for high resolution bioaerosol fractionation and viable virus collection
用于高分辨率生物气溶胶分级和活病毒收集的微旋风阵列
- 批准号:
10593436 - 财政年份:2022
- 资助金额:
$ 23.01万 - 项目类别:
Microcyclone arrays for high resolution bioaerosol fractionation and viable virus collection
用于高分辨率生物气溶胶分级和活病毒收集的微旋风阵列
- 批准号:
10593436 - 财政年份:2022
- 资助金额:
$ 23.01万 - 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
- 批准号:
10535472 - 财政年份:2021
- 资助金额:
$ 23.01万 - 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
- 批准号:
10211909 - 财政年份:2021
- 资助金额:
$ 23.01万 - 项目类别:
Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
- 批准号:
10458751 - 财政年份:2021
- 资助金额:
$ 23.01万 - 项目类别:
相似国自然基金
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Minimally Invasive High Intensity Therapeutic Ultrasound for the Treatment of Obstructive Hypertrophic Cardiomyopathy
微创高强度超声治疗梗阻性肥厚型心肌病
- 批准号:
10603460 - 财政年份:2023
- 资助金额:
$ 23.01万 - 项目类别:
Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
- 批准号:
10458751 - 财政年份:2021
- 资助金额:
$ 23.01万 - 项目类别:
Forward viewing catheter-delivered microbubble enhanced sonothrombolysis (FV-CAMUS)
前视导管微泡增强超声溶栓 (FV-CAMUS)
- 批准号:
10219344 - 财政年份:2018
- 资助金额:
$ 23.01万 - 项目类别:
Forward viewing catheter-delivered microbubble enhanced sonothrombolysis (FV-CAMUS)
前视导管微泡增强超声溶栓 (FV-CAMUS)
- 批准号:
9755499 - 财政年份:2018
- 资助金额:
$ 23.01万 - 项目类别:
Forward viewing catheter-delivered microbubble enhanced sonothrombolysis (FV-CAMUS)
前视导管微泡增强超声溶栓 (FV-CAMUS)
- 批准号:
9982126 - 财政年份:2018
- 资助金额:
$ 23.01万 - 项目类别: