Platelet Translational Control Mechanisms in Stroke and Vascular Cognitive Dementia
中风和血管性认知痴呆中的血小板翻译控制机制
基本信息
- 批准号:10281770
- 负责人:
- 金额:$ 38.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAmyloid beta-Protein PrecursorAttenuatedBlood - brain barrier anatomyBlood PlateletsBlood VesselsBrainBrain InfarctionBrain IschemiaCellular Metabolic ProcessCerebrovascular CirculationClinicalCognitiveDataDementiaDepositionDevelopmentDiffusionFRAP1 geneFunctional disorderGenesGenetic TranslationImpaired cognitionIn VitroInfarctionInflammationInflammatoryIschemic StrokeLinkMagnetic Resonance ImagingMediatingMessenger RNAMetabolicMolecularMorbidity - disease rateMotorNervous System PhysiologyNeurologicNeurological outcomeNeuronal InjuryNeuronsNeutrophil InfiltrationOutcomePathway interactionsPatientsPlatelet ActivationProtein BiosynthesisProteinsRecording of previous eventsRegulationRiskRoleSenile PlaquesSignal TransductionStrokeStroke preventionTechniquesTestingTimeTranscriptTranslatingTranslationsUp-RegulationVascular Dementiaabeta depositionbeta-site APP cleaving enzyme 1blood-brain barrier disruptionblood-brain barrier permeabilizationbrain tissuecognitive disabilitycognitive functioncognitive testingexperiencefunctional outcomesimprovedimproved outcomein vivoinnovationneuroinflammationneuron lossneutrophilnovel therapeuticsplatelet functionpost strokepublic health prioritiesresponsestroke outcomestroke survivortranscriptomevascular cognitive impairment and dementiavascular inflammation
项目摘要
About 800,000 people in the U.S. experience ischemic stroke annually, a leading cause of cognitive disability.
Emerging data has identified new links between stroke and other dementias, such as Alzheimer’s Disease,
with about 25–30% of ischemic stroke survivors developing immediate or delayed vascular cognitive
impairment and dementia. Platelets mediate ischemic stroke and vascular damage by interacting with
neutrophils to increase inflammation, which leads to neuronal death, cognitive dysfunction, and dementia.
However, the molecular mechanism by which platelets regulate ischemic stroke and the development of
vascular dementia remain unknown. Platelets possess a dynamic transcriptome and mRNAs in platelets are
translated to new proteins in signal-dependent fashion. In platelets, one of the primary pathways controlling
mRNA translation and associated cellular and metabolic processes is the mechanistic Target of Rapamycin
(mTOR). Our preliminary data demonstrate that the mTOR pathway is functional in platelets, and that mTOR
controls protein synthesis, including amyloid precursor protein (APP), a key player in the development of
dementia. Moreover, our data suggest that targeting mTOR in platelets alters platelet function and improves
ischemic and neurological outcomes in stroke. Whether mTOR is activated in platelets during ischemic stroke,
and how this influences mRNA translation, cellular/metabolic functions, and outcomes has never before been
rigorously examined. We will test the innovative hypothesis that targeting the mTOR pathway in platelets
improves neurological and cognitive outcomes following ischemic stroke, thereby reducing the risk
of developing vascular dementia. We will employ complementary clinical, in vitro, and in vivo approaches,
along with state-of-the-art sequencing techniques to rigorously test this hypothesis. Specific Aim 1 will
determine if mTOR activation and mRNA translation are upregulated in platelets during ischemic stroke. We
will specifically examine the regulation of APP protein synthesis and other proteins under mTOR control which
contribute to neuronal damage and adverse cognitive outcomes. Specific Aim 2 will determine how mTOR
activation in platelets regulates functional responses during stroke, including the role of platelet mTOR in
regulating inflammation, cerebral blood flow, and blood brain barrier disruption, all known to contribute to the
development of vascular dementia. Specific Aim 3 will establish whether targeting mTOR improves ischemic
and neurological outcomes in stroke. Successful completion of these aims will 1) identify transcripts under
mTOR-dependent control in platelets during stroke; (2) establish whether disruption of mTOR attenuates
platelet APP deposition, downstream inflammatory signaling, and blood brain barrier permeability; and (3)
determine whether targeting mTOR improves cerebral blood flow and neurological outcomes following stroke.
Data generated will significantly increase our understanding of how translational control pathways in platelets
contribute to the pathophysiology of ischemic stroke and the development of vascular dementia.
美国每年约有 80 万人患有缺血性中风,这是导致认知障碍的主要原因。
新数据发现中风与其他痴呆症(如阿尔茨海默病)之间存在新的联系
大约 25-30% 的缺血性中风幸存者出现立即或延迟的血管认知
血小板通过相互作用介导缺血性中风和血管损伤。
中性粒细胞会增加炎症,从而导致神经元死亡、认知功能障碍和痴呆。
然而,血小板调节缺血性中风的分子机制及其发展
血管性痴呆仍然未知。血小板具有动态转录组,并且血小板中的 mRNA 尚不清楚。
在血小板中以信号依赖性方式转化为新蛋白质,这是控制的主要途径之一。
mRNA 翻译以及相关的细胞和代谢过程是雷帕霉素的机制靶点
(mTOR)。我们的初步数据表明 mTOR 通路在血小板中发挥作用,并且 mTOR
控制蛋白质合成,包括淀粉样前体蛋白 (APP),它是
此外,我们的数据表明,靶向血小板中的 mTOR 可以改变血小板功能并改善。
缺血性中风期间血小板中的 mTOR 是否被激活,
以及这对 mRNA 翻译、细胞/代谢功能和结果的影响是前所未有的
我们将测试针对血小板中 mTOR 通路的创新假设。
改善缺血性中风后的神经和认知结果,从而降低风险
我们将采用互补的临床、体外和体内方法,
以及最先进的测序技术将严格检验这一假设。
确定缺血性中风期间血小板中 mTOR 激活和 mRNA 翻译是否上调。
将专门检查 APP 蛋白质合成和 mTOR 控制下的其他蛋白质的调节,
导致神经损伤和不良认知结果的具体目标 2 将决定 mTOR 如何进行。
血小板的激活调节中风期间的功能反应,包括血小板 mTOR 在中风中的作用
调节炎症、脑血流量和血脑屏障破坏,所有这些都有助于
具体目标 3 将确定靶向 mTOR 是否可以改善缺血性症状。
成功完成这些目标将 1) 确定以下转录本。
中风期间血小板的 mTOR 依赖性控制;(2) 确定 mTOR 的破坏是否会减弱
血小板 APP 沉积、下游炎症信号传导和血脑屏障通透性;以及 (3)
确定靶向 mTOR 是否可以改善中风后的脑血流量和神经系统结果。
生成的数据将显着增加我们对血小板中翻译控制途径的理解
有助于缺血性中风的病理生理学和血管性痴呆的发展。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Megakaryocyte and Platelet Transcriptomics for Discoveries in Human Health and Disease.
巨核细胞和血小板转录组学在人类健康和疾病中的发现。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Davizon;Rowley, Jesse W;Rondina, Matthew T
- 通讯作者:Rondina, Matthew T
The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells During Infectious Diseases.
血栓炎症时代:血小板是传染病期间的动态传感器和效应细胞。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Guo, Li;Rondina, Matthew T
- 通讯作者:Rondina, Matthew T
Sepsis alters the transcriptional and translational landscape of human and murine platelets.
脓毒症改变了人类和小鼠血小板的转录和翻译景观。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:20.3
- 作者:Middleton, Elizabeth A;Rowley, Jesse W;Campbell, Robert A;Grissom, Colin K;Brown, Samuel M;Beesley, Sarah J;Schwertz, Hansjörg;Kosaka, Yasuhiro;Manne, Bhanu K;Krauel, Krystin;Tolley, Neal D;Eustes, Alicia S;Guo, Li;Paine 3rd, Robert;Harris
- 通讯作者:Harris
Phospho-inositide-dependent kinase 1 regulates signal dependent translation in megakaryocytes and platelets.
磷酸肌醇依赖性激酶 1 调节巨核细胞和血小板中的信号依赖性翻译。
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Manne, Bhanu Kanth;Bhatlekar, Seema;Middleton, Elizabeth A;Weyrich, Andrew S;Borst, Oliver;Rondina, Matthew T
- 通讯作者:Rondina, Matthew T
FcγRIIA expression accelerates nephritis and increases platelet activation in systemic lupus erythematosus.
FcγRIIA 表达加速肾炎并增加系统性红斑狼疮中的血小板活化。
- DOI:
- 发表时间:2020-12-17
- 期刊:
- 影响因子:20.3
- 作者:Melki, Imene;Allaeys, Isabelle;Tessandier, Nicolas;Mailhot, Benoit;Cloutier, Nathalie;Campbell, Robert A;Rowley, Jesse W;Salem, David;Zufferey, Anne;Laroche, Audrée;Lévesque, Tania;Patey, Natalie;Rauch, Joyce;Lood, Christian;Droit, Arnaud;M
- 通讯作者:M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Thomas Rondina其他文献
Matthew Thomas Rondina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Thomas Rondina', 18)}}的其他基金
Translational Control of Megakaryocyte and Platelet Function in Sepsis
脓毒症中巨核细胞和血小板功能的转化控制
- 批准号:
10210293 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Translational Control of Megakaryocyte and Platelet Function in Sepsis
脓毒症中巨核细胞和血小板功能的转化控制
- 批准号:
10210293 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Translational Control of Megakaryocyte and Platelet Function in Sepsis
脓毒症中巨核细胞和血小板功能的转化控制
- 批准号:
9577464 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Platelet Immune Responses in Aging and Influenza
衰老和流感中的血小板免疫反应
- 批准号:
8625156 - 财政年份:2014
- 资助金额:
$ 38.13万 - 项目类别:
Platelet Immune Responses in Aging and Influenza
衰老和流感中的血小板免疫反应
- 批准号:
8852034 - 财政年份:2014
- 资助金额:
$ 38.13万 - 项目类别:
相似国自然基金
基于充分降维方法的复杂疾病多层次调控模型研究
- 批准号:82304239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抑制性tRNA(suppressor tRNA, sup-tRNA)通读CFTR无义突变治疗囊性纤维化疾病小鼠的研究
- 批准号:82370099
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
- 批准号:82302142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新的先天性甲减致病基因CNTN6突变导致疾病的发生及其机制研究
- 批准号:82301943
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于纸基微流控芯片的食源性疾病致病因子即时检测技术研究
- 批准号:22304022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
- 批准号:
10833734 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
Investigate the utility of APLP1 as an endosomal biomarker for Alzheimer's Disease in Down Syndrome
研究 APLP1 作为唐氏综合症阿尔茨海默氏病内体生物标志物的效用
- 批准号:
10727134 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
PREVENTING ALZHEIMER’S DISEASE-LIKE BRAIN PATHOLOGY IN HIV INFECTION BY TARGETING CCR5
通过靶向 CCR5 预防 HIV 感染中的阿尔茨海默病样脑部病变
- 批准号:
10700624 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别: