Data Driven Approaches to Improving Risk Prediction of Pulmonary Complications After Major Inpatient Surgery
数据驱动的方法改善重大住院手术后肺部并发症的风险预测
基本信息
- 批准号:10283012
- 负责人:
- 金额:$ 16.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAddressAffectAnesthesia proceduresAnesthesiologyCaringClinicalCompetenceComplexComplicationComputer softwareComputerized Medical RecordConsentCritical CareDataData ScienceDecision MakingDerivation procedureDevelopmentElectronic Health RecordElementsEventEvidence based interventionGoalsGrantHospital CostsHospitalsHypoxemiaInduction of neuromuscular blockadeInformation SystemsInpatientsInstitutionInternationalInterventionIntraoperative CareIntraoperative PeriodKnowledgeLearningLength of StayLifeLightLiquid substanceLungMachine LearningMechanical ventilationMedicineMentorsMichiganModernizationMonitorMorbidity - disease rateMyocardial InfarctionObservational StudyOperating RoomsOperative Surgical ProceduresOpioidOutcomePatient CarePatient riskPatientsPatterns of CarePerioperativePerioperative CarePhysiologicalPhysiologyPneumoniaPopulationPostoperative ComplicationsPostoperative PeriodPreoperative ProcedurePreventionPrivate HospitalsProceduresProcessProviderRecording of previous eventsRecordsRegistriesReportingResearchResearch PersonnelResearch TrainingResourcesRiskRisk EstimateRisk FactorsS PhaseScientistSeriesSiteStatistical ModelsStructureSurgical complicationTechniquesTimeTrainingTransfusionTranslatingUniversitiesUpdateVariantVentilatorWorkbasecareercareer developmentclinical practiceclinically relevantcohortcostdata complexitydata modelingdata streamsevidence basehigh dimensionalityhigh riskimprovedindividual patientinnovationinpatient surgeryinsightinteroperabilityminimally invasivemortalitymyocardial injurypatient registrypatient responsepoint of carepredictive modelingpreventprofessorrisk predictionrisk prediction modelskillssupervised learningtenure tracktoolvigilance
项目摘要
ABSTRACT
BACKGROUND: Postoperative pulmonary complications (PPCs) are common and major drivers of morbidity
and mortality after major inpatient surgery. Various risk prediction scores identify patients at high risk of
developing PPCs and observational research has connected peri-operative care practices with subsequent
risk. However, anesthesia providers do not have patient specific evidence based interventions to prevent
pulmonary complications.
RESEARCH: The proposed research will draw on a wealth of perioperative information available to identify the
interactions of patient, procedure and process of care factors which place patients at risk of PPCs. This will
incorporate advances in data science to the pre-operative prediction of PPCs (Aim 1). We will then revise and
improve this estimate in light of the high fidelity intraoperative data stream from ventilators, monitors and
patient response to real life decisions being made during the delivery of anesthesia care (Aim 2). This will allow
understanding of what features most contributed to patient specific risk (Aim 3). The proposed research and
training will provide Dr Colquhoun with the skills in data science to his transition to an independent researcher.
CANDIDATE: Dr Douglas A Colquhoun is a tenure track Assistant Professor of Anesthesiology at the
University of Michigan. He is board certified in Anesthesiology and Critical Care Medicine and maintains an
active clinical practice in the perioperative care of patients undergoing major surgery. During a T32 Research
Training Grant, Dr Colquhoun developed expertise in the derivation of outcomes and processes of care from
electronic medical record data. His long term career goal is to prevent postoperative pulmonary complications
by offering anesthesia providers data driven strategies for management delivered at the point of care.
ENVIRONMENT: The University of Michigan is the coordinating center for the Multicenter Perioperative
Outcomes Group (MPOG) an international consortium of 50 anesthesiology and surgical departments with
perioperative information systems. Sachin Kheterpal, MD, MBA is the primary mentor for Dr. Colquhoun, and is
the Director for MPOG. Dr Kheterpal and the Department of Anesthesiology have a rich history of developing
and deploying innovative software solutions to address problems in perioperative medicine and research. Dr
Colquhoun will additionally be advised from expert co-mentors drawn from across the institution and a scientific
advisory panel expert in the prevention and management of postoperative complications.
抽象的
背景:术后肺部并发症(PPC)是常见的,也是发病的主要驱动因素
以及重大住院手术后的死亡率。各种风险预测评分可识别高风险患者
开发 PPC 和观察性研究将围手术期护理实践与后续治疗联系起来
风险。然而,麻醉提供者没有基于患者具体证据的干预措施来预防
肺部并发症。
研究:拟议的研究将利用大量可用的围手术期信息来确定
患者、程序和护理过程等因素的相互作用使患者面临 PPC 的风险。这将
将数据科学的进步纳入 PPC 的术前预测(目标 1)。然后我们将修改并
根据来自呼吸机、监视器和设备的高保真术中数据流改进这一估计
患者对麻醉护理期间做出的现实生活决策的反应(目标 2)。这将允许
了解哪些特征对患者特定风险影响最大(目标 3)。拟议的研究和
培训将为 Colquhoun 博士提供数据科学技能,帮助他转型为独立研究员。
候选人:Douglas A Colquhoun 博士是麻醉学终身教授助理教授
密歇根大学。他获得了麻醉学和重症监护医学委员会认证,并保持着
积极开展大手术患者围手术期护理的临床实践。在 T32 研究期间
通过培训补助金,Colquhoun 博士发展了从以下方面推导出护理结果和过程的专业知识:
电子病历数据。他的长期职业目标是预防术后肺部并发症
通过为麻醉提供者提供数据驱动的护理策略来进行管理。
环境:密歇根大学是多中心围手术期的协调中心
Outcomes Group (MPOG) 是一个由 50 个麻醉科和外科科室组成的国际联盟,
围手术期信息系统。 Sachin Kheterpal,医学博士、工商管理硕士是 Colquhoun 博士的主要导师,
MPOG 总监。 Kheterpal 博士和麻醉科拥有丰富的发展历史
部署创新的软件解决方案来解决围手术期医学和研究中的问题。博士
Colquhoun 还将获得来自整个机构的专家联合导师和科学界人士的建议。
预防和管理术后并发症的顾问小组专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Alastair Colquhoun其他文献
Douglas Alastair Colquhoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Alastair Colquhoun', 18)}}的其他基金
The Use of Novel Linked Databasesto Reduce Postoperative Opioid Use Among Patients Undergoing Inpatient Surgery
使用新型链接数据库减少住院手术患者术后阿片类药物的使用
- 批准号:
10745607 - 财政年份:2023
- 资助金额:
$ 16.66万 - 项目类别:
Data Driven Approaches to Improving Risk Prediction of Pulmonary Complications After Major Inpatient Surgery
数据驱动的方法改善重大住院手术后肺部并发症的风险预测
- 批准号:
10665631 - 财政年份:2021
- 资助金额:
$ 16.66万 - 项目类别:
Data Driven Approaches to Improving Risk Prediction of Pulmonary Complications After Major Inpatient Surgery
数据驱动的方法改善重大住院手术后肺部并发症的风险预测
- 批准号:
10469672 - 财政年份:2021
- 资助金额:
$ 16.66万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell-free DNA as a versatile analyte for the monitoring of sepsis
游离 DNA 作为监测脓毒症的多功能分析物
- 批准号:
10665402 - 财政年份:2023
- 资助金额:
$ 16.66万 - 项目类别:
SCH: Graph-based Spatial Transcriptomics Computational Methods in Kidney Diseases
SCH:肾脏疾病中基于图的空间转录组学计算方法
- 批准号:
10816929 - 财政年份:2023
- 资助金额:
$ 16.66万 - 项目类别:
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
- 批准号:
10656829 - 财政年份:2023
- 资助金额:
$ 16.66万 - 项目类别:
lmmunomodulatory roles of renal lymphatic endothelial cells in Acute Kidney Injury
肾淋巴内皮细胞在急性肾损伤中的免疫调节作用
- 批准号:
10612171 - 财政年份:2023
- 资助金额:
$ 16.66万 - 项目类别:
Role of branched-chain amino acid catabolism in the proximal tubule
支链氨基酸分解代谢在近曲小管中的作用
- 批准号:
10657039 - 财政年份:2023
- 资助金额:
$ 16.66万 - 项目类别: