Interdisciplinary Training in Cognitive, Computational and Systems Neuroscience (CCSN)
认知、计算和系统神经科学跨学科培训 (CCSN)
基本信息
- 批准号:10210312
- 负责人:
- 金额:$ 23.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the past 30 years, the scope of Systems Neuroscience has expanded enormously. Functional brain imaging has provided the opportunity to study the neural mechanisms of complex cognitive functions in humans. Concurrently, powerful techniques such as optogenetics have made it possible to dissect neural circuits with unprecedented resolution. In parallel, computational approaches such as deep networks and Bayesian models are increasingly central to the field as a whole, putting a premium on advanced quantitative skills and literacy. Clearly Systems Neuroscience is now a trans-disciplinary field, integrating theoretical frameworks and techniques from molecular biology, neurophysiology, cognitive science, ethology, computer science, statistics, and more. In the face of this remarkable expansion, PhD programs face three challenges. First, although the body of knowledge relevant to Systems Neuroscience has increased in breadth and depth, students also face increased pressure to conduct research, publish, and get independent funding early in their career. Second, systems-level research is conducted in multiple departments and PhD programs. At Washington University, these include the PhD programs in Neuroscience, Psychology, and Biomedical Engineering. Yet, students coming from different disciplines often do not speak each other’s language. Third, a successful career in science requires a broad portfolio of professional skills – writing papers and grant proposals, collaborating with colleagues with different scientific backgrounds, presenting results in scientific venues and to wider audiences, navigating the academic job market – that exceed the normal coursework. The Cognitive, Computational and Systems Neuroscience (CCSN) pathway was developed in response to these challenges. CCSN is an elite pathway available for graduate students in years 3-4, with eligibility from multiple PhD programs relevant to Systems Neuroscience broadly defined. The emphasis of CCSN is on trans- disciplinary training and professional skills development. To access the pathway, students must complete (in years 1-2), three pre-requisite and foundational courses on systems neuroscience, cognitive science and animal behavior, and computational neuroscience. In year 3, CCSN students take two additional courses – one providing foundational knowledge and hands-on training with advanced quantitative methods and data-science tools, and the other allowing them to develop a trans-disciplinary grant proposal – which often becomes an actual NRSA application – shaped by peer, instructor, and committee feedback. In year 4 (and throughout the pathway), CCSN students take part in multiple Career Development activities, including mentoring junior students, organizing scientific events, interacting with external speakers, participating in informal dinners with CCSN faculty, and taking part in community outreach. The CCSN pathway has existed for ~15 years and has a demonstrated history of remarkable success. Here we request funds for 5 fellowships. Contingent on the success of this application, Washington University will provide matching funds for an additional 5 slots.
在过去的 30 年里,系统神经科学的范围已经大大扩展,为研究人类复杂认知功能的神经机制提供了机会,同时,光遗传学等强大的技术使得剖析神经回路成为可能。与此同时,深度网络和贝叶斯模型等计算方法越来越成为整个领域的核心,显然系统神经科学现在是一个跨学科领域,整合了理论框架和知识。面对这种显着的扩展,博士课程面临着三个挑战:首先,尽管与系统神经科学相关的知识体系在广度和范围上都有所增加。其次,华盛顿大学的多个系和博士项目都进行系统级研究,其中包括神经科学、心理学的博士项目。 ,和生物医学工程。第三,成功的科学事业需要广泛的专业技能——撰写论文和资助提案、与具有不同科学背景的同事合作、在科学场所向更广泛的受众展示成果、导航。认知、计算和系统神经科学 (CCSN) 途径是为应对这些挑战而开发的,是面向 3-4 年级研究生的精英途径,具有多个博士学位的资格。相关计划CCSN 的重点是跨学科培训和专业技能发展,学生必须(在 1-2 年级)完成三门关于系统神经科学、认知科学的先决和基础课程。在第三年,CCSN 学生额外学习两门课程——一门提供基础知识和使用先进定量方法和数据科学工具的实践培训,另一门允许他们开发跨学科资助。提案——这通常会成为实际的 NRSA 申请——由同伴、教师和委员会的反馈决定 在第 4 年(以及整个衔接过程),CCSN 学生参加多种职业发展活动,包括指导低年级学生、组织科学活动、与外部演讲者互动、参与。与 CCSN 教员举行非正式晚宴,并参加社区外展活动 CCSN 途径已经存在了约 15 年,并且已经取得了显着的成功,在此我们请求为 5 项奖学金提供资金,具体取决于此申请的成功。提供配套资金额外 5 个插槽。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TODD S BRAVER其他文献
TODD S BRAVER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TODD S BRAVER', 18)}}的其他基金
Cognitive enhancement through model-based and individualized neurostimulation
通过基于模型的个性化神经刺激增强认知
- 批准号:
10608715 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Aging effects on the neural coding of proactive and reactive cognitive control
衰老对主动和反应认知控制的神经编码的影响
- 批准号:
10705622 - 财政年份:2022
- 资助金额:
$ 23.72万 - 项目类别:
Aging effects on the neural coding of proactive and reactive cognitive control: Administrative Supplement
衰老对主动和反应性认知控制神经编码的影响:行政补充
- 批准号:
10715441 - 财政年份:2022
- 资助金额:
$ 23.72万 - 项目类别:
Aging effects on the neural coding of proactive and reactive cognitive control
衰老对主动和反应认知控制的神经编码的影响
- 批准号:
10462368 - 财政年份:2022
- 资助金额:
$ 23.72万 - 项目类别:
Interdisciplinary Training in Cognitive, Computational and Systems Neuroscience (CCSN)
认知、计算和系统神经科学跨学科培训 (CCSN)
- 批准号:
10621223 - 财政年份:2020
- 资助金额:
$ 23.72万 - 项目类别:
Interdisciplinary Training in Cognitive, Computational and Systems Neuroscience (CCSN)
认知、计算和系统神经科学跨学科培训 (CCSN)
- 批准号:
10413903 - 财政年份:2020
- 资助金额:
$ 23.72万 - 项目类别:
NEUROECONOMICS OF AGING AND COGNITIVE CONTROL: A DISCOUNTING FRAMEWORK
衰老和认知控制的神经经济学:贴现框架
- 批准号:
8632726 - 财政年份:2014
- 资助金额:
$ 23.72万 - 项目类别:
MECHANISMS OF MOTIVATION, COGNITION & AGING INTERACTIONS: SMALL-GROUP MEETING
动机、认知机制
- 批准号:
8319950 - 财政年份:2012
- 资助金额:
$ 23.72万 - 项目类别:
相似国自然基金
智能管理控制系统对团队绩效的影响——基于神经科学的实验研究
- 批准号:72302246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
系统神经科学
- 批准号:31925018
- 批准年份:2019
- 资助金额:400 万元
- 项目类别:国家杰出青年科学基金
从发展认知神经科学角度研究文字加工系统的形成机制
- 批准号:31771229
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
计算神经科学及其在生物声纳神经系统定量化分析中应用研究
- 批准号:60871085
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
神经膜计算系统研究
- 批准号:30870826
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Cognitive control targets for the treatment of obsessive compulsive disorder in young children
治疗幼儿强迫症的认知控制目标
- 批准号:
10647416 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Efficiency of evidence accumulation (EEA) as a higher-order, computationally defined RDoc construct
证据积累效率 (EEA) 作为高阶、计算定义的 RDoc 构造
- 批准号:
10663601 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Cognitive and Neural Strategies for Latent Feature Inference
潜在特征推理的认知和神经策略
- 批准号:
10662877 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
ARMCADA - Advancing Reliable Measurement in Cognitive Aging and Decision-making Ability
ARMCADA - 推进认知老化和决策能力的可靠测量
- 批准号:
10663728 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别: