Quantitative, Image-Based Osteoarthritis Biomarkers Software Resubmission

基于图像的定量骨关节炎生物标志物软件重新提交

基本信息

  • 批准号:
    10207857
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Musculoskeletal diseases are common in the United States, especially among the elderly and individuals of low socioeconomic status, and they take a large toll on the Nation's overall health status. Bone disorders are diagnosed by exploring a patient's medical history and by physical exam, alongside laboratory tests, bone biopsies, and imaging tests. Bone imaging tests provide a non-invasive way to examine at bone structure. However, imaging data is often evaluated qualitatively or with operator dependence as opposed to automated or quantitative measurements. These quantitative measurements are not sensitive enough to detect subtle variations in bone quality associated with early disease progression. We propose the development of high performance, multimodal, and automated 3D bone characterization tools, which are accessible through a web browser. A broad range of researchers and clinicians can leverage these tools to obtain high-throughput, reproducible biomarkers for statistically sensitive research studies. The system will automatically segment bone and cartilage and quantify biomarkers from the regions of interest. The proposed system will have superior high-throughput capabilities over existing bone image analysis suites, and it will provide access to state-of-the-art algorithms for researchers without programming abilities. In addition to providing a powerful resource to the research community, we will commercialize this complete, streamlined analytical solution by offering it as an online fee-per-image processing service. Our system will be validated by demonstrating that we can detect skeletal deterioration in preclinical studies, which can potentially lead to new clinical trials for novel therapeutic and diagnostic approaches in humans. We will test the hypothesis that the system can automatically identify osteoarthritis in knee images from the Osteoarthritis Initiative database and differentiate hemophilia in micro-computed tomography images. The ultimate goal of the proposed project is to lead to better preventive strategies and improved progression monitoring of osteoarthritis and related diseases.
项目概要 肌肉骨骼疾病在美国很常见,尤其是老年人和美国人 社会经济地位低下,对国家整体健康状况造成重大影响。骨骼疾病是 通过探索患者的病史和体格检查以及实验室检查、骨骼检查来诊断 活检和影像学检查。骨成像测试提供了一种非侵入性的骨结构检查方法。然而, 成像数据通常是定性评估或依赖操作员评估,而不是自动或定量评估 测量。这些定量测量不够灵敏,无法检测骨骼的细微变化 质量与早期疾病进展相关。我们建议发展高性能、多式联运、 以及自动化 3D 骨骼表征工具,可通过网络浏览器访问。范围广泛 研究人员和临床医生可以利用这些工具来获得高通量、可重复的生物标志物 统计敏感的研究。系统将自动分割骨骼和软骨并量化 来自感兴趣区域的生物标志物。所提出的系统将具有卓越的高通量能力 超越现有的骨骼图像分析套件,它将为研究人员提供最先进的算法 没有编程能力。除了为研究界提供强大的资源外,我们还将 通过按图像收费的在线处理方式将这一完整、简化的分析解决方案商业化 服务。我们的系统将通过证明我们可以在临床前检测骨骼退化来进行验证 研究,这可能会导致新的治疗和诊断方法的新临床试验 人类。我们将测试系统可以自动识别膝盖图像中的骨关节炎的假设 来自骨关节炎倡议数据库,并在微计算机断层扫描图像中区分血友病。 拟议项目的最终目标是制定更好的预防策略并改善进展 监测骨关节炎和相关疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew McCormick其他文献

Matthew McCormick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew McCormick', 18)}}的其他基金

A Computational Framework for Distributed Registration of Massive Neuroscience Images
海量神经科学图像分布式配准的计算框架
  • 批准号:
    10259930
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
Quantitative, Image-Based Osteoarthritis Biomarkers Software Resubmission
基于图像的定量骨关节炎生物标志物软件重新提交
  • 批准号:
    10250562
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
Prostate Cancer Assessment Via Integrated 3D ARFI Elasticity Imaging and Multi-Parametric MRI
通过集成 3D ARFI 弹性成像和多参数 MRI 进行前列腺癌评估
  • 批准号:
    8905274
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
  • 批准号:
    72371117
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
  • 批准号:
    42377321
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
  • 批准号:
    22376147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10367144
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10610317
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Map Manager: Longitudinal image analysis with online editing and sharing.
地图管理器:纵向图像分析,在线编辑和共享。
  • 批准号:
    10365810
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
Open-top light-sheet microscopy for non-destructive 3D pathology of prostate biopsies
用于前列腺活检非破坏性 3D 病理学的开顶光片显微镜
  • 批准号:
    10082154
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
  • 批准号:
    10190871
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了