Targeting receptor tyrosine kinases with novel methods in computer-aided drug discovery for the treatment of fibrotic renal disease
用计算机辅助药物发现的新方法靶向受体酪氨酸激酶来治疗纤维化肾病
基本信息
- 批准号:10197115
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsBindingBinding ProteinsBinding SitesBiochemicalCell modelChemicalsChemistryChronic Kidney FailureClinicalCollaborationsCollagenCollagen Type IVComputer AssistedComputer softwareComputing MethodologiesDDR2 geneDataDepositionDescriptorDevelopmentDiseaseDisease ProgressionDockingEnd stage renal failureEvaluationFamilyFibrosisFluorescence Resonance Energy TransferIn VitroIndividualInjury to KidneyInterventionJointsKidneyKidney DiseasesKnowledgeLaboratoriesLeadLearning ModuleLibrariesLigandsLinkMachine LearningMediatingMethodologyMethodsModelingMolecular ConformationMyofibroblastPatientsPharmacologyPhasePhosphotransferasesPopulationPrevalenceProteinsQuantitative Structure-Activity RelationshipReceptor Protein-Tyrosine KinasesRisk FactorsRisk ManagementSamplingScientistSeveritiesSite-Directed MutagenesisStructural ModelsStructureSymptomsTestingTherapeuticTherapeutic AgentsUnited StatesWorkagedbaseclinically relevantdesigndiscoidin domain receptor 1discoidin domain receptor 2discoidin receptordrug candidatedrug discoveryflexibilityglobal healthhigh throughput analysishigh throughput screeninghospital readmissionimprovedin silicoin vivo Modelinhibitor/antagonistinnovationkidney fibrosiskinase inhibitorlearning algorithmmachine learning algorithmmesangial cellmolecular dynamicsmortalitymouse modelmulti-task learningmultitaskneural networknew technologynovelnovel lead compoundnovel therapeutic interventionnovel therapeuticsprotein structurescreeningsmall moleculestructural biologytargeted treatmenttherapeutic targettoolvirtualvirtual model
项目摘要
PROJECT SUMMARY
Chronic Kidney Disease (CKD) is a major disease multiplier in patients aged 65+. CKD is characterized by
progressive renal fibrosis mediated through supraphysiologic type IV collagen deposition by renal
myofibroblasts. As the US population continues to age, it becomes increasingly critical to identify new
therapeutic strategies for CKD. Mouse models of kidney injury suggest reducing the activity of the receptor
tyrosine kinase discoidin domain receptor 1 (DDR1) is protective against fibrotic renal disease. Inhibition of
DDR1 kinase reduces mesangial cell deposition of type IV collagen. To develop targeted therapeutics for CKD,
the laboratory of Jens Meiler (sponsor of this application) partners with the laboratories of Ambra Pozzi (co-
sponsor of this application) and Craig Lindsley to create a comprehensive DDR1 kinase inhibitor discovery
pipeline. The Meiler laboratory utilizes a combination of ligand-based quantitative structure-activity relationship
(QSAR) modeling for virtual high-throughput screening (vHTS) and subsequent protein-ligand docking to
identify lead compounds for synthesis/derivatization (Lindsley) and biochemical/functional evaluation (Pozzi).
Selective targeting of individual kinases remains a significant challenge, and current methods in vHTS fail to
account for protein binding pocket features contributing to binding selectivity. The central objectives of this
proposal are to identify novel DDR1-selective inhibitors for the treatment of CKD and to develop new
technologies to address current limitations in vHTS. In Specific Aim I, I will generate and use QSAR models to
perform vHTS for potential DDR1 inhibitors. I will subsequently define a structural model of DDR1 kinase
inhibitor selectivity using molecular dynamics (MD)-generated conformational ensembles of DDR kinases in
conjunction with ROSETTA flexible docking. I will also perform in silico and in vitro site-directed mutagenesis to
further characterize the determinants of DDR1 kinase inhibitor selectivity. In Specific Aim II, I will develop a
multitasking machine algorithm within the Meiler lab BIOLOGY AND CHEMISTRY LIBRARY (BCL) which will
leverage protein structural information in addition to conventional ligand-based descriptors to improve vHTS for
selective DDR1 kinase inhibitors. The methods developed will address long-standing shortcomings in the field
of computer-aided drug discovery (CADD) – namely, that protein structure-based methods are computationally
prohibitive for vHTS while ligand-based methods do not include direct information on binding mode. As the
methods developed in Aim II become available, they will be integrated in the discovery cycle described in Aim I
to ultimately define a structural model of DDR1 kinase selectivity and identify novel therapeutic agents for the
treatment of CKD through the use of new and established methods. Furthermore, novel computational
methods established in these studies will be broadly applicable to other challenging targets in drug discovery.
项目概要
慢性肾脏病 (CKD) 是 65 岁以上患者的主要疾病倍数。
肾超生理性 IV 型胶原沉积介导的进行性肾纤维化
随着美国人口持续老龄化,识别新的肌成纤维细胞变得越来越重要。
CKD 小鼠肾损伤模型的治疗策略表明降低受体的活性。
酪氨酸激酶盘状蛋白结构域受体 1 (DDR1) 可预防纤维化肾病。
DDR1 激酶可减少 IV 型胶原的系膜细胞沉积 为了开发 CKD 的靶向疗法,
Jens Meiler 实验室(本申请的赞助商)与 Ambra Pozzi 实验室(共同
本申请的赞助者)和 Craig Lindsley 共同创建全面的 DDR1 激酶抑制剂发现
Meiler 实验室利用基于配体的定量结构-活性关系的组合。
用于虚拟高通量筛选 (vHTS) 的 (QSAR) 建模以及随后的蛋白质配体对接
识别用于合成/衍生化 (Lindsley) 和生化/功能评估 (Pozzi) 的先导化合物。
选择性靶向单个激酶仍然是一个重大挑战,目前的 vHTS 方法无法
解释有助于结合选择性的蛋白质结合口袋特征。
建议确定用于治疗 CKD 的新型 DDR1 选择性抑制剂并开发新的
解决 vHTS 当前限制的技术。在特定目标 I 中,我将生成并使用 QSAR 模型来
对潜在的 DDR1 抑制剂进行 vHTS,随后我将定义 DDR1 激酶的结构模型。
使用分子动力学 (MD) 生成的 DDR 激酶构象整体进行抑制剂选择性
结合 ROSETTA 灵活对接,我还将进行计算机模拟和体外定点诱变。
在特定目标 II 中,我将进一步描述 DDR1 激酶抑制剂选择性的决定因素。
Meiler 实验室生物和化学图书馆 (BCL) 中的多任务机器算法将
除了传统的基于配体的描述符之外,还利用蛋白质结构信息来改进 vHTS
选择性 DDR1 激酶抑制剂的开发将解决该领域长期存在的缺陷。
计算机辅助药物发现 (CADD) 的发展——即基于蛋白质结构的方法通过计算
禁止 vHTS,而基于配体的方法不包括有关结合模式的直接信息。
在目标 II 中开发的方法变得可用,它们将被集成到目标 I 中描述的发现周期中
最终定义 DDR1 激酶选择性的结构模型并确定新的治疗药物
通过使用新的和已建立的方法来治疗 CKD。
这些研究中建立的方法将广泛适用于药物发现中的其他具有挑战性的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Patrick Brown其他文献
Benjamin Patrick Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Patrick Brown', 18)}}的其他基金
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
- 批准号:
10680745 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
- 批准号:
10648772 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别: