Integrative analysis of genomics and imaging data from the BRAIN Initiative and other public data sources
对来自 BRAIN Initiative 和其他公共数据源的基因组学和成像数据进行综合分析
基本信息
- 批准号:10190025
- 负责人:
- 金额:$ 130.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectiveArchivesAtlasesAutopsyBRAIN initiativeBehavioralBiologicalBrainBrain DiseasesBrain regionCellsClinical ResearchCognitiveCollectionDataData AnalysesData SetData SourcesDepositionDisciplineExhibitsFunctional ImagingFutureGeneticGenetic EpistasisGenetic ModelsGenetic VariationGenomicsGenotype-Tissue Expression ProjectGoalsGrainHeritabilityHumanImageJointsKnowledgeLeadLearningLengthLinkMagnetic Resonance ImagingMeasuresMental disordersMetadataMethodsModelingMolecularMolecular GeneticsNetwork-basedNeurosciencesPatternPhenotypePolygenic TraitsProcessRegulator GenesResearchResearch PersonnelResolutionResourcesRiskStructural ModelsStructureTechniquesTheoretical modelThickTimeTissuesTwin Multiple BirthVariantWorkbasebehavior influencebiobankbrain cellcell typeconnectomedata harmonizationdata integrationdeep learningdesignfunctional genomicsgenetic predictorsgenetic variantgenome wide association studygenomic datahigh dimensionalityhuman diseaseimprovedin vivoinsightinterestmethod developmentmodel buildingmultilevel analysisneural circuitneuroimagingphenomicsphenotypic datapredictive modelingpsychologicrepositorysecondary analysistrait
项目摘要
Constructing an integrated picture of human brain function requires understanding how the effects of molecular
and genetic factors propagate upwards, through many intervening layers of structure and interaction, to
influence behavioral, psychiatric and cognitive traits. Projects such as the BRAIN Initiative (BI) recognize that
building such a picture requires the convergent efforts of experts across genetics, genomics, neuroscience,
and clinical studies, and have created resources to aid the integration of data from these disciplines. However,
the challenge of combining experimental methods and theoretical models spanning vast length/time scales
remains significant. One of the more promising avenues of addressing this challenge is the use of interpretable
deep-learning approaches to learn high-dimensional structure inherent in data. By embedding constraints from
known biological structure, investigators can relate the models’ internal representations to identifiable factors
from neuroscience. This proposal will draw on the extensive resources in BI archives, along with other public
resources, to integrate data from genetics, functional genomics, and neuroimaging. Through secondary
analysis on this data we will build deep, multilevel polygenic models of high-level traits, such as cognitive,
affective and psychiatric traits. We will trace the mechanisms underlying such traits to specific regions, cell
types, functional connectivity patterns and structural imaging features. Additionally, by embedding biological
structure at intermediate levels (tissue and cell-type gene regulatory networks; structural/functional constraints
from MRI data), we will build models that improve on additive heritability measures of polygenic risk. In the
process, we will harmonize BI data with other publicly available brain omics and imaging datasets. We will
deposit all resources and models into relevant BI archives. The proposal is framed as follows. First, we will
combine genetics with genomics-based networks from multiple brain regions and cell types, and develop
predictive models of region- and cell-type-specific omics variation. These will be included in an interpretable
deep model of cognitive and psychiatric traits (Aim 1). Second, we will learn predictive models of structural and
functional imaging features from genetic predictors, which will likewise be embedded in interpretable deep
models of high-level traits (Aim 2). Third, an integrated, polygenic model will be built by combining both
functional-genomics- and neuroimaging-based features, allowing the impact of both subcomponents to be
assessed. Furthermore, we will extend our previous work to develop compression-based interpretability
methods, which allow a network to be coarse-grained and interpreted at varying levels of resolution. Such
interpretation will include the exploration of subphenotypic structure in psychiatric disorders and interactions
between traits (Aim 3). We expect the proposed approach to have wide-ranging implications, including insights
into mechanistic underpinnings of brain function, new frameworks for integrative multilevel analysis, and the
development of methods and resources for future research.
构建人类大脑功能的整体图景需要了解分子的影响如何
遗传因素通过结构和相互作用的许多介入层向上传播,
BRAIN Initiative (BI) 等项目认识到这一点。
构建这样一幅图景需要遗传学、基因组学、神经科学、
和临床研究,并创建了资源来帮助整合这些学科的数据。
将跨越巨大长度/时间尺度的实验方法和理论模型相结合的挑战
解决这一挑战的更有希望的途径之一是使用可解释的。
通过嵌入约束来学习数据固有的高维结构的深度学习方法。
已知的生物结构,研究人员可以将模型的内部表征与可识别的因素联系起来
该提案将利用 BI 档案以及其他公共资源中的广泛资源。
资源,通过二次整合来自遗传学、功能基因组学和神经影像学的数据。
通过对这些数据的分析,我们将构建高级特征的深层、多级多基因模型,例如认知、
我们将追踪这些特征背后的特定区域、细胞的机制。
此外,还通过嵌入生物来识别类型、功能连接模式和结构成像特征。
中间水平的结构(组织和细胞类型基因调控网络;结构/功能限制
来自 MRI 数据),我们将建立模型来改进多基因风险的附加遗传性测量。
在此过程中,我们将协调 BI 数据与其他公开可用的脑组学和成像数据集。
将所有资源和模型存入相关 BI 档案。首先,我们将。
将遗传学与来自多个大脑区域和细胞类型的基于基因组学的网络相结合,并开发
区域和细胞类型特异性组学变异的预测模型将包含在可解释的模型中。
认知和精神特征的深层模型(目标 1)其次,我们将学习结构和精神特征的预测模型。
来自遗传预测因子的功能成像特征,同样将嵌入可解释的深层
第三,将两者结合起来建立一个综合的多基因模型。
基于功能基因组学和神经影像学的特征,允许两个子组件的影响
此外,我们将扩展我们之前的工作来开发基于压缩的可解释性。
方法,允许网络粗粒度并以不同的分辨率级别进行解释。
解释将包括探索精神疾病的亚表型结构和相互作用
我们期望所提出的方法具有广泛的影响,包括见解。
大脑功能的机械基础、综合多层次分析的新框架以及
开发未来研究的方法和资源。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anxiety Shapes Amygdala-Prefrontal Dynamics During Movie Watching.
观看电影时焦虑会影响杏仁核前额叶的动态。
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Kirk, Peter A;Holmes, Avram J;Robinson, Oliver J
- 通讯作者:Robinson, Oliver J
Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data.
面对神经影像数据采集和分析中的种族排斥做法。
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:25
- 作者:Ricard, J A;Parker, T C;Dhamala, E;Kwasa, J;Allsop, A;Holmes, A J
- 通讯作者:Holmes, A J
Wave-like properties of functional dynamics across the cortical sheet.
整个皮质层功能动力学的波状特性。
- DOI:
- 发表时间:2023-04-19
- 期刊:
- 影响因子:16.2
- 作者:Chopra, Sidhant;Zhang, Xi;Holmes, Avram J
- 通讯作者:Holmes, Avram J
Functional brain networks are associated with both sex and gender in children.
功能性大脑网络与儿童的性别有关。
- DOI:
- 发表时间:2023-11-15
- 期刊:
- 影响因子:0
- 作者:Dhamala, Elvisha;Bassett, Dani S;Yeo, B T Thomas;Homes, Avram J
- 通讯作者:Homes, Avram J
Circulating PACAP levels are associated with increased amygdala-default mode network resting-state connectivity in posttraumatic stress disorder
循环 PACAP 水平与创伤后应激障碍中杏仁核默认模式网络静息态连接性增加相关
- DOI:
- 发表时间:2024-09-13
- 期刊:
- 影响因子:0
- 作者:KJ Clancy;SE Hammack;EJ Casteen;CD Pernia;SA Jobson;MW Lewis;NP Daskalakis;Carlezon Wa
- 通讯作者:Carlezon Wa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Bender Gerstein其他文献
Mark Bender Gerstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Bender Gerstein', 18)}}的其他基金
1/2 Discovery and validation of neuronal enhancers associated with the development of psychiatric disorders
1/2 与精神疾病发展相关的神经元增强剂的发现和验证
- 批准号:
10801125 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Laboratory, Data Analysis, and Coordinating Center (LDACC) for the Developmental Human Genotype-Tissue Expression Project
人类发育基因型组织表达项目实验室、数据分析和协调中心 (LDACC)
- 批准号:
10709553 - 财政年份:2021
- 资助金额:
$ 130.99万 - 项目类别:
Laboratory, Data Analysis, and Coordinating Center (LDACC) for the Developmental Human Genotype-Tissue Expression Project
人类发育基因型组织表达项目实验室、数据分析和协调中心 (LDACC)
- 批准号:
10306961 - 财政年份:2021
- 资助金额:
$ 130.99万 - 项目类别:
Enhancing open data sharing for functional genomics experiments: Measures to quantify genomic information leakage and file formats for privacy preservation
加强功能基因组学实验的开放数据共享:量化基因组信息泄漏的措施和保护隐私的文件格式
- 批准号:
10251876 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
The Y-SCORCH Data Generation Center at Yale for Single-Cell Opioid Responses in the Context of HIV
耶鲁大学 Y-SCORCH 数据生成中心用于艾滋病毒背景下的单细胞阿片类药物反应
- 批准号:
10461029 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
The Y-SCORCH Data Generation Center at Yale for Single-Cell Opioid Responses in the Context of HIV
耶鲁大学 Y-SCORCH 数据生成中心用于艾滋病毒背景下的单细胞阿片类药物反应
- 批准号:
10685384 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
The Y-SCORCH Data Generation Center at Yale for Single-Cell Opioid Responses in the Context of HIV
耶鲁大学 Y-SCORCH 数据生成中心用于艾滋病毒背景下的单细胞阿片类药物反应
- 批准号:
10037753 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
Supplement: Human Brain Collection for Study of the Neuropathogenesis of SARS-CoV-2, HIV-1, and Opioid Use Disorder
补充:用于研究 SARS-CoV-2、HIV-1 和阿片类药物使用障碍神经发病机制的人脑采集
- 批准号:
10468477 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 130.99万 - 项目类别:
The Effect of Cytomegalovirus Infection on Daily Stress Processes in Early Adulthood
巨细胞病毒感染对成年早期日常应激过程的影响
- 批准号:
10678088 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Involvement of dopamine signaling in chronic pain-induced negative affective state and nicotine use comorbidity
多巴胺信号传导参与慢性疼痛引起的负面情感状态和尼古丁使用合并症
- 批准号:
10662951 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Investigation of Digital Media Use, Anxiety, and Biobehavioral Emotion Regulation in Adolescents
青少年数字媒体使用、焦虑和生物行为情绪调节的调查
- 批准号:
10814547 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别: