Targeting Cellular Senescence and RAGE in Type 2 Diabetes
靶向 2 型糖尿病中的细胞衰老和 RAGE
基本信息
- 批准号:10176684
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced Glycosylation End ProductsAgingApoptosisB-LymphocytesBiologyBiomechanicsBone ResorptionBone remodelingBrainCASP8 geneCDKN2A geneCell AgingCellsCeramidesCollagenComplementComplications of Diabetes MellitusCre-LoxPCytometryDasatinibDataDeteriorationDevelopmentDominant-Negative MutationEnergy MetabolismFatty AcidsFatty acid glycerol estersFractureFunctional disorderGeneticGenetic TranscriptionHistologicHyperglycemiaIn VitroInflammationInflammatoryInterventionIntuitionLOX geneLifeLiverLysineMarrowMass Spectrum AnalysisMediatingMetabolicMetabolic dysfunctionMetabolic stressMolecularMouse StrainsMusMyelogenousMyeloid CellsNon-Insulin-Dependent Diabetes MellitusOsteoblastsOsteoclastsOsteocytesPathway interactionsPharmaceutical PreparationsPharmacologyPhenotypePhysiological ProcessesPopulationProcessPropertyProteinsQuercetinResearchResourcesRisk FactorsRoleSerumSignal TransductionSkeletonStructure of beta Cell of isletSystemT-LymphocyteTechnologyTestingTherapeuticTissuesTransgenesTransgenic MiceTransgenic OrganismsTranslationsWorkagedbonebone cellbone qualitybone turnovercellular targetingclinical applicationdiabeticevidence baseglycationhigh dimensionalityimprovedin vivoinnovationinnovative technologiesinsightnon-diabeticnovelnovel strategiesnovel therapeutic interventionosteoprogenitor cellpre-clinicalprematurepreventpromoterreceptor bindingreceptor for advanced glycation endproductssenescenceskeletalsugartooltransgenic suicide geneyoung adult
项目摘要
PROJECT SUMMARY
Type 2 diabetes (T2D), a major risk factor for poor bone quality and fractures, is associated with the premature
accumulation of senescent cells and advanced glycation endproducts (AGEs; activators of the receptor for
AGE [RAGE] pathway) in multiple tissues, including bone. Intuitively, senescent cells and RAGE could act
independently or interact via cross-talk to contribute substantially to skeletal fragility in T2D, yet this concept
has not been rigorously tested. This proposal is founded on innovative concepts, technology, and approaches
to test our central hypothesis that targeting cellular senescence or RAGE can improve T2D-related skeletal
fragility. To test our hypothesis, we will use novel transgenic mice and innovative technology, including mass
cytometry as well as advanced histological and molecular tools. The interplay among bone, energy
metabolism, and T2D has been a topic of research for years, yet few in vivo studies have rigorously
interrogated the contributions of senescent cells or RAGE signaling to skeletal dysfunction in T2D. From a
translational perspective, better understanding of the cross-talk between senescence and RAGE in bone will
yield impactful advances and may reveal novel strategies to ameliorate accelerated skeletal aging in T2D. To
this end, in Aim 1 we will identify, locate, and characterize bone-resident senescent cell populations in mice
with T2D and define their T2D-specific senescence-associated secretory phenotype (SASP). In Aim 2, using
mice harboring transgenes that enable the selective elimination of p16Ink4a+ or p21Cip1+ senescent cells, we will
test the hypothesis that senescent cell clearance in mice with established T2D will normalize bone remodeling
and quality. Thus, we will distinguish the causal roles of p16Ink4a and p21Cip1 in mediating skeletal dysfunction in
T2D using our global p16- and p21-ATTAC mouse strains by comparing the effects of systemic clearance of
p16Ink4a+ vs p21Cip1+ senescent cells. In addition, we will assess the relative impact of clearing senescent
osteocytes, using our novel Cre-LoxP lines – p16-LOX-ATTAC and p21-LOX-ATTAC. Global and osteocyte-
specific clearance of senescent cells will be compared with pharmacological elimination using “senolytics”.
Finally, in Aim 3, using our novel Cre-loxP mouse that inhibits RAGE signal transduction via cell-specific
cytosolic-domain deficient dominant-negative RAGE (DN-RAGE) expression, we will define the effects of
inhibiting RAGE signaling in the osteoblast/osteocyte and myeloid/osteoclast lineages on skeletal fragility in
mice with T2D. Collectively, these studies will rigorously test whether cellular senescence and RAGE signaling
underlie T2D-related skeletal fragility. We will address these questions by leveraging our unique resources and
expertise. We will build upon compelling preliminary data and innovative approaches, including novel
analytical, transgenic, and pharmacological tools that we anticipate will significantly advance our understanding
of the fundamental biology of skeletal dysfunction in T2D, leading to new mechanistic insights, and evidence-
based therapeutic approaches to facilitate the translation of preclinical discoveries to clinical applications.
项目概要
2 型糖尿病 (T2D) 是骨质量差和骨折的主要危险因素,与早产有关。
衰老细胞和晚期糖基化终产物(AGEs;受体激活剂)的积累
包括骨骼在内的多个组织中的 AGE [RAGE] 通路)直观地说,衰老细胞和 RAGE 可以发挥作用。
独立或通过串扰相互作用,极大地导致 T2D 骨骼脆弱,但这个概念
该提案尚未经过严格测试。
测试我们的中心假设,即针对细胞衰老或 RAGE 可以改善与 T2D 相关的骨骼
为了检验我们的假设,我们将使用新型转基因小鼠和创新技术,包括质量。
细胞计数以及先进的组织学和分子工具骨骼、能量之间的相互作用。
代谢,T2D 多年来一直是研究课题,但很少有体内研究严格证实
From a 探讨了衰老细胞或 RAGE 信号传导对 T2D 骨骼功能障碍的影响。
转化视角,更好地理解骨骼衰老和RAGE之间的相互作用
取得了有影响力的进展,并可能揭示改善 T2D 骨骼加速老化的新策略。
为此,在目标 1 中,我们将识别、定位和表征小鼠骨中的衰老细胞群
在目标 2 中,使用 T2D 并定义其 T2D 特异性衰老相关分泌表型 (SASP)。
携带能够选择性消除 p16Ink4a+ 或 p21Cip1+ 衰老细胞的转基因的小鼠,我们将
检验以下假设:患有 T2D 的小鼠中的衰老细胞清除将使骨重塑正常化
因此,我们将区分 p16Ink4a 和 p21Cip1 在介导骨骼功能障碍中的因果作用。
T2D 使用我们的全球 p16- 和 p21-ATTAC 小鼠品系,通过比较全身清除的影响
p16Ink4a+ 与 p21Cip1+ 衰老细胞此外,我们将评估清除衰老细胞的相对影响。
骨细胞,使用我们的新型 Cre-LoxP 系 - p16-LOX-ATTAC 和 p21-LOX-ATTAC Global 和骨细胞-。
衰老细胞的特异性清除将与使用“senolytics”的药物消除进行比较。
最后,在目标 3 中,使用我们的新型 Cre-loxP 小鼠,通过细胞特异性抑制 RAGE 信号转导
胞浆结构域缺陷显性失活 RAGE (DN-RAGE) 表达,我们将定义
抑制成骨细胞/骨细胞和骨髓/破骨细胞谱系中的 RAGE 信号传导对骨骼脆性的影响
总的来说,这些研究将严格测试细胞衰老和 RAGE 信号传导是否相关。
我们将利用我们独特的资源和技术来解决这些问题。
我们将建立在令人信服的初步数据和创新方法的基础上,包括新颖的方法。
我们预计分析、转基因和药理学工具将显着增进我们的理解
T2D 骨骼功能障碍的基础生物学研究,带来新的机制见解和证据-
基于治疗方法,促进临床前发现转化为临床应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Nicholas Farr其他文献
Joshua Nicholas Farr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Nicholas Farr', 18)}}的其他基金
Targeting Cellular Senescence and RAGE in Type 2 Diabetes
靶向 2 型糖尿病中的细胞衰老和 RAGE
- 批准号:
10386884 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Targeting Cellular Senescence and RAGE in Type 2 Diabetes
靶向 2 型糖尿病中的细胞衰老和 RAGE
- 批准号:
10604279 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
The Role of Cellular Senescence in Mediating Age-Related Bone Loss
细胞衰老在介导与年龄相关的骨质流失中的作用
- 批准号:
9761282 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
The Role of Cellular Senescence in Mediating Age-Related Bone Loss
细胞衰老在介导与年龄相关的骨质流失中的作用
- 批准号:
9977929 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
相似海外基金
Dissecting connections between diet, the microbiome and Alzheimers disease
剖析饮食、微生物组和阿尔茨海默病之间的联系
- 批准号:
10740056 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Early life exercise effects on tendon maturation and resistance to late life tendinopathies
早期锻炼对肌腱成熟和晚年肌腱病抵抗力的影响
- 批准号:
10628956 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
GLO1/Aβ-mediated mitochondrial and synaptic injury in Alzheimer's disease
GLO1/Aβ 介导的阿尔茨海默病线粒体和突触损伤
- 批准号:
10639086 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Development of enzymatic tools for rapid measurement of Advanced Glycation End Product-protein adducts
开发用于快速测量高级糖基化终产物-蛋白质加合物的酶工具
- 批准号:
10757215 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Translational studies of cellular senescence as a regulator of doxorubicin-mediated arterial dysfunction
细胞衰老作为阿霉素介导的动脉功能障碍调节剂的转化研究
- 批准号:
10450529 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别: