Ultrasound-mediated Controlled Hypoxemic Reperfusion for Inhibition of Reperfusion Injury
超声介导的控制低氧再灌注抑制再灌注损伤
基本信息
- 批准号:10153874
- 负责人:
- 金额:$ 73.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAcute myocardial infarctionAddressAmericanAnimal ModelAnterior Descending Coronary ArteryBiological MarkersBloodBlood VesselsBlood flowBuffersCardiac MyocytesCardiac VolumeCathetersCell Culture TechniquesCell DeathCell SurvivalCellsCessation of lifeClinicalCoronary arteryCoronary sinus structureDataDefectDevicesDiffuseDistalEmergency SituationEmulsionsEnsureEventExposure toFamily suidaeFluorocarbonsFree RadicalsFrequenciesGasesGoalsHeartHeart InjuriesHeart failureHypoxemiaHypoxiaIn VitroInfarctionInterruptionIschemiaLeadLeftLifeLigationLiquid substanceMeasurementMeasuresMechanicsMediatingMicrobubblesMicrofluidicsModelingModificationMorbidity - disease rateMyocardialMyocardial InfarctionMyocardial IschemiaMyocardiumOutcomeOxidative StressOxygenOxygen saturation measurementPartial PressurePatientsPerfusionPhase TransitionPhysiologic pulsePhysiologicalPreparationProcessProductionPropertyProtocols documentationRattusReactive Oxygen SpeciesReperfusion InjuryReperfusion TherapyRiskSavingsStainsStutteringSystemTechniquesTechnologyTestingTetrazoliumTherapeuticTherapeutic EmbolizationTimeTissue ModelTissue ViabilityTissuesTranslatingTreatment EfficacyTroponinUltrasonographyUnited StatesVentricularVentricular FunctionWhole Bloodbaseexperimental studyfirst-in-humanheart cellhuman studyimprovedin vivoindexingminimally invasivemortalitymyocardial infarct sizingmyocardial injurynovelnovel therapeuticspercutaneous coronary interventionporcine modelpreservationpressureprimary outcomesecondary analysissensorsuccessvaporization
项目摘要
PROJECT SUMMARY/ABSTRACT
Myocardial infarction is induced by an ischemic event and often leads to damage of the myocardium and
potentially death. Approximately 150,000 deaths occur each year in the United States due to acute myocardial
infarction and a similar number go on to suffer from debilitating heart failure due to the infarction. The primary
clinical goal during treatment of myocardial infarction is to restore blood flow to the myocardium as quickly as
possible. However, paradoxically, the reperfusion can cause significant damage to the myocardium. Of the
total infarcted volume, potentially up to 50% can be attributed to reperfusion and not ischemia. The
reperfusion injury occurs, in part, due to the ischemic tissue converting the newfound supply of oxygen into
reactive oxygen species. Reactive oxygen species can significantly damage a cell and lead to cell death. This
project will develop an ultrasound-based oxygen scavenging approach to enable controlled hypoxemic
reperfusion in order to reduce cell death from reactive oxygen species. The technique relies on a process
known as acoustic droplet vaporization, where a liquid droplet is phase-transitioned into a gas microbubble
when exposed to ultrasound. The microbubble acts a sink for oxygen in whole blood, effectively sequestering
the oxygen within the microbubble so that less oxygen diffuses into the tissue. In turn, less oxygen in the tissue
may reduce oxidative stress and cell death. Our central hypothesis is that ultrasound-mediated oxygen
scavenging during reperfusion, following an ischemic event, increases cell and tissue viability. In vitro cell
culture and ex vivo tissue models of ischemia-reperfusion injury have been used to obtain preliminary data
supporting this hypothesis. Our proof-of-principle data demonstrates that oxygen scavenging can be done
using intravascular ultrasound devices, which simplifies in vivo ultrasound targeting and would allow for a
percutaneous approach that can be integrated into existing percutaneous treatments. We have also
demonstrated the ability to tune the amount of oxygen scavenging by modifying droplet properties, droplet
concentrations, and ultrasound insonation parameters. We will test the hypothesis through studies focusing on
the efficiency and efficacy of oxygen scavenging in vitro, ex vivo, and in vivo. The first aim is to adapt our
current technology into a translationally relevant working system. Studies will investigate droplet manufacturing
and ultrasound insonation approaches. The second aim will investigate how the magnitude and duration of
oxygen scavenging effect reperfusion injury using an isolated whole heart with Langendorff preparation that
enables measurement of both infarct size and ventricular function. These protocols will be translated to an in
vivo porcine model of ischemia-reperfusion injury. The primary outcomes within that model will include infarct
size measurement and oximetry. The progression of these experiments will ensure a thorough understanding
of the therapy and how modifications to the approach can be made to improve therapeutic efficacy.
项目概要/摘要
心肌梗塞是由缺血事件引起的,通常会导致心肌和心肌的损伤。
潜在的死亡。美国每年约有 15 万人因急性心肌梗塞死亡
梗塞和类似数量的人继续遭受因梗塞而导致的衰弱性心力衰竭。初级
心肌梗死治疗的临床目标是尽快恢复心肌血流
可能的。然而,矛盾的是,再灌注会对心肌造成严重损害。的
总梗塞体积可能高达 50%,可归因于再灌注而非缺血。这
再灌注损伤的发生部分是由于缺血组织将新发现的氧气转化为
活性氧。活性氧会严重损害细胞并导致细胞死亡。这
该项目将开发一种基于超声波的除氧方法,以实现控制低氧血症
再灌注以减少活性氧造成的细胞死亡。该技术依赖于流程
称为声学液滴汽化,其中液滴相变为气体微泡
当暴露于超声波时。微泡充当全血中氧气的接收器,有效隔离
微泡内的氧气,从而减少扩散到组织中的氧气。反过来,组织中的氧气减少
可以减少氧化应激和细胞死亡。我们的中心假设是超声波介导的氧气
缺血事件后再灌注期间的清除可增加细胞和组织的活力。体外细胞
缺血再灌注损伤的培养和离体组织模型已用于获得初步数据
支持这一假设。我们的原理验证数据表明可以进行除氧
使用血管内超声设备,这简化了体内超声定位并允许
经皮方法可以整合到现有的经皮治疗中。我们还有
证明了通过改变液滴特性来调节氧清除量的能力,液滴
浓度和超声声波参数。我们将通过研究来检验这一假设
体外、离体和体内除氧的效率和功效。第一个目标是适应我们的
将当前技术转化为可转化的相关工作系统。研究将调查液滴制造
和超声波方法。第二个目标将调查影响的幅度和持续时间
使用带有 Langendorff 制剂的离体全心来清除氧对再灌注损伤的影响
能够测量梗塞面积和心室功能。这些协议将被翻译成一个in
猪体内缺血再灌注损伤模型。该模型中的主要结果将包括梗塞
尺寸测量和血氧测定。这些实验的进展将确保彻底理解
治疗方法以及如何修改该方法以提高治疗效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Joseph Haworth其他文献
Kevin Joseph Haworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Joseph Haworth', 18)}}的其他基金
Ultrasound-mediated Controlled Hypoxemic Reperfusion for Inhibition of Reperfusion Injury
超声介导的控制低氧再灌注抑制再灌注损伤
- 批准号:
10391488 - 财政年份:2019
- 资助金额:
$ 73.38万 - 项目类别:
Ultrasound-mediated Controlled Hypoxemic Reperfusion for Inhibition of Reperfusion Injury
超声介导的控制低氧再灌注抑制再灌注损伤
- 批准号:
10677544 - 财政年份:2019
- 资助金额:
$ 73.38万 - 项目类别:
Ultrasound-mediated oxygen scavenging for inhibition of reperfusion injury
超声介导的氧清除抑制再灌注损伤
- 批准号:
9163928 - 财政年份:2016
- 资助金额:
$ 73.38万 - 项目类别:
Ultrasound-mediated oxygen scavenging for inhibition of reperfusion injury
超声介导的氧清除抑制再灌注损伤
- 批准号:
9319306 - 财政年份:2016
- 资助金额:
$ 73.38万 - 项目类别:
Passive Cavitation Image-Guided Ultrasound-Mediated Drug Delivery for Atheroma Th
被动空化图像引导超声介导的动脉粥样硬化药物输送
- 批准号:
8155319 - 财政年份:2010
- 资助金额:
$ 73.38万 - 项目类别:
Passive Cavitation Image-Guided Ultrasound-Mediated Drug Delivery for Atheroma Th
被动空化图像引导超声介导的动脉粥样硬化药物输送
- 批准号:
8003631 - 财政年份:2010
- 资助金额:
$ 73.38万 - 项目类别:
相似国自然基金
雅解毫命通过“肝-心轴”调控PI3K-Akt通路减轻急性心肌梗死的作用及机制研究
- 批准号:82360839
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微塑料通过下调细胞外囊泡的RN7SL1调控急性心肌梗死免疫微环境的机制研究
- 批准号:82370349
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向多重急性心肌梗死生物标志物现场快速检测的干式免疫闭合式双极电化学发光传感技术的研究
- 批准号:32371554
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Trim28调控ALDH2翻译后修饰在急性心肌梗死中的作用及机制
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
ALOX5-5-HETE介导铁死亡在急性心肌梗死残余炎症的机制研究
- 批准号:82300373
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
- 批准号:
10557917 - 财政年份:2022
- 资助金额:
$ 73.38万 - 项目类别:
Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
- 批准号:
10374343 - 财政年份:2022
- 资助金额:
$ 73.38万 - 项目类别:
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10181828 - 财政年份:2021
- 资助金额:
$ 73.38万 - 项目类别:
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10610782 - 财政年份:2021
- 资助金额:
$ 73.38万 - 项目类别:
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10406302 - 财政年份:2021
- 资助金额:
$ 73.38万 - 项目类别: