Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
基本信息
- 批准号:10155128
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAntibioticsBindingBiochemical ReactionBiochemistryBioinorganic ChemistryBiological SciencesBiotechnologyCatalysisChemistryCleaved cellCommunitiesCompetenceComplexDNA RepairDevelopmentElectron Nuclear Double ResonanceElectron Spin Resonance SpectroscopyEnzyme ReactivationEnzymesFellowshipFreezingFutureGenerationsGlycineHealthHumanHydrogenInorganic ChemistryIronKineticsLaboratoriesLifeLinkMethionineMolecular BiologyMontanaNaturePathway interactionsPeptidesPharmacologic SubstancePharmacology and ToxicologyPhysicsPhysiologyPlayPositioning AttributeProcessPropertyReactionReportingResearchRibonucleotide ReductaseRoleS-AdenosylmethionineScientistSignal TransductionSiteStructureSulfurSystemTechniquesTemperatureTrainingUniversitiesVariantVitaminsX-Ray Crystallographyanalogbeneficial microorganismcareerdetection methodexperienceexperimental studyformate acetyltransferase activating enzymehuman pathogeninsightmacromoleculemembermetal complexmetalloenzymenon-Nativepathogenic microbepeptidomimeticsphotolysispolypeptideprotein purificationskillstherapy designtool
项目摘要
Project Summary.
The radical S-adenosyl-L-methionine (SAM) superfamily of enzymes are found in all kingdoms of life and
use an iron-sulfur cluster to catalyze a broad range of reactions. These diverse reactions are surprisingly initiated
by a unified process which begins with the binding of co-substrate/co-factor, SAM, to an iron-sulfur cluster.
Reductive cleavage of SAM by the iron-sulfur cluster generates the reactive radical intermediate, a 5-
deoxyadenosyl radical. This species is a potent hydrogen atom abstractor and is widely accepted as the species
responsible for radical SAM enzymes’ reactivity. The generation of this intermediate has yet to be fully
understood since its presence in the reaction pathway has until recently only been inferred from indirect detection
methods. Building on the recent direct observation of this intermediate using photolysis in the absence of
substrate, as well as through the use non-native substrates, this project aims to capture and characterize the
radical intermediate under catalytically relevant conditions, and to link an organometallic intermediate found to
be central to catalysis to this potent organic radical intermediate. Several approaches will be used to probe the
presence of these intermediates in the reaction pathway resulting in substrate radical generation. A peptide
mimic of the macromolecular substrate of a well-studied radical SAM enzyme will be used to capture the 5-
deoxyadenosyl radical as a stable species. Secondly, another well-studied SAM enzyme whose reaction can be
slowed under particular conditions will allow for the opportunity to study the reactive radical intermediates. These
two enzyme systems will be used with photolysis, rapid freeze quench, cryoreduction, and sequential annealing
techniques. Characterization of intermediates will be carried out using electron paramagnetic resonance and
electron nuclear double resonance spectroscopic experiments, as well as X-ray crystallography. The use of SAM
isotopologues will perturb the spectroscopic signals of potential intermediates, allowing structural identification
of transient intermediates. The objective of the proposed research is to connect proposed catalytic intermediates
to function and provide electronic and geometric details to aid in elucidation of the mechanism of radical initiation
by radical SAM enzymes. Understanding this biochemical reaction will allow for the application of these enzymes
as a powerful biocatalyts capable of numerous challenging reactions and for the potential to pharmaceutically
target radical SAM enzymes in humans and pathogens.
I aim to launch an independent research career in bioinorganic chemistry. This field is made up of facets
of inorganic chemistry, molecular biology, physics and biochemistry and can have profound impacts on
physiology, pharmacology and toxicology. In order to best be able to contribute to this field, my training must
expand to include aspects of biological sciences. This fellowship in the Broderick laboratory will allow me to gain
experience in the expression and purification of proteins and build on experience in elucidation inorganic reaction
mechanisms and spectroscopic skills. There is an incredible community of scientists at Montana State University
that can expand my understanding of all facets of bioinorganic chemistry.
项目摘要。
自由基 S-腺苷-L-甲硫氨酸 (SAM) 酶超家族存在于所有生命领域,并且
使用铁硫簇来催化广泛的反应,令人惊讶地引发了这些不同的反应。
通过一个统一的过程,该过程从辅助底物/辅助因子 SAM 与铁硫簇的结合开始。
铁硫簇对 SAM 进行还原裂解,生成活性自由基中间体,即 5-
脱氧腺苷自由基是一种有效的氢原子吸收剂,被广泛接受。
该中间体的生成尚未完全完成。
由于直到最近才从间接检测中推断出它在反应途径中的存在,因此已被理解
基于最近在没有光解的情况下直接观察该中间体的方法。
基质,以及通过使用非天然基质,该项目旨在捕获和表征
在催化相关条件下生成自由基中间体,并连接发现的有机金属中间体
是催化这种有效的有机自由基中间体的核心,将使用几种方法来探测。
反应途径中这些中间体的存在导致底物自由基 A 肽的产生。
经过充分研究的自由基 SAM 酶的大分子底物模拟物将用于捕获 5-
其次,另一种经过充分研究的 SAM 酶,其反应可以是:
在特定条件下减慢将允许有机会研究反应性自由基中间体。
两种酶系统将用于光解、快速冷冻淬灭、冷冻还原和顺序退火
中间体的表征将使用电子顺磁共振和
电子核双共振光谱实验,以及X射线晶体学的使用。
同位素体会扰乱潜在中间体的光谱信号,从而实现结构识别
所提出的研究的目的是连接所提出的催化中间体。
发挥作用并提供电子和几何细节,以帮助阐明自由基引发机制
了解这种生化反应将有助于这些酶的应用。
作为一种强大的生物催化剂,能够进行许多具有挑战性的反应,并具有药物开发的潜力
靶向人类和病原体中的自由基 SAM 酶。
我的目标是在生物无机化学领域开展独立的研究生涯。这个领域由多个方面组成。
无机化学、分子生物学、物理学和生物化学的学科,可以对
为了能够最好地为这个领域做出贡献,我的培训必须是生理学、药理学和毒理学。
扩展到包括生物科学的各个方面。布罗德里克实验室的奖学金将使我受益匪浅。
蛋白质表达和纯化方面的经验以及无机反应阐明方面的经验
蒙大拿州立大学有一个令人难以置信的科学家群体。
这可以扩大我对生物无机化学各个方面的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maike Nicole Lundahl其他文献
Maike Nicole Lundahl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maike Nicole Lundahl', 18)}}的其他基金
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
- 批准号:
10447575 - 财政年份:2021
- 资助金额:
$ 6.49万 - 项目类别:
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
- 批准号:
10571701 - 财政年份:2021
- 资助金额:
$ 6.49万 - 项目类别:
相似国自然基金
地表水中极低浓度抗生素的高灵敏检测与特异性识别新方法研究
- 批准号:42307566
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工补给对地下水抗生素抗性组与病原菌的影响及调控机制
- 批准号:42377392
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
局域微碱性环境调控对3D-LDHs基类芬顿靶向降解抗生素的增强机制研究
- 批准号:22306188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
过氧乙酸/亚硫酸盐体系降解内酰胺类抗生素作用机制及对氯化消毒副产物的影响与控制
- 批准号:52370009
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Chemoenzymatic Synthesis of Darobactin Antibiotics
Darobactin抗生素的化学酶法合成
- 批准号:
10592211 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Elucidating the Role of Cobalamin in BchE, a B12-Binding Radical SAM Enzyme
阐明钴胺素在 BchE(一种 B12 结合自由基 SAM 酶)中的作用
- 批准号:
10751688 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
The origins of amino acid selectivity in the homologation pathway
同源途径中氨基酸选择性的起源
- 批准号:
10729967 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别: