Functional and Real Analysis for Partial Differential Equations

偏微分方程的泛函分析和实分析

基本信息

  • 批准号:
    09440069
  • 负责人:
  • 金额:
    $ 6.78万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

The biggest achievement we have made for the last three years with the help of the Grant-in-Aid would be that we have created a very active group of researchers centered at the Kagurazaka Campus of the Science University of Tokyo. Since April, 1999, we are conducting an open seminar "Kagurazaka Seminar on Analysis" every month, in which three lectures are presented. We also had an international conference in November, 1999. The purpose of this research project was described as "to prepare Functional Analysis and Real Analysis so that necessary tools would be furnished for the research of partial differential equations and, in particular, to nonlinear equations". A big amount of results have been obtained along this line by not only the registered investigators of the project but also graduate students who worked with them and many of the attendants of the seminar and the international conference.Besides revision and correction of an English translation of his books, Komatsu discovered a few new results on convolutions of hyperfunctions etc.Okazawa applied abstract theories of linear evolution equations and nonlinear semigroups to concrete equations such as the Ginzburg-Landau equations. He also established a general theory of the logarithms log A of linear operators.Hayashi and Kato studied nonlinear partial differential equations mainly of evolution type. Hayashi proved the existence of solutions and analyzed their asymptotic behavior as the time tends to infinity for many important equations. Kato established the analyticity of solutions.Nakamura considered the inverse problem of elastic bodies and applied it to the tomography.Miyachi has obtained basic results on function spaces which are defined by real analytic methods and are getting more and more important in the theory of differential equations.
过去三年,我们在援助金的帮助下取得的最大成就是,我们创建了一个以东京科学大学神乐坂校区为中心的非常活跃的研究小组。自1999年4月起,我们每月举办一次公开研讨会“神乐坂分析研讨会”,共进行三场讲座。我们还在1999年11月召开了一次国际会议。这个研究项目的目的被描述为“准备泛函分析和实分析,以便为偏微分方程,特别是非线性方程的研究提供必要的工具”。沿着这条线,不仅该项目的注册研究员、与他们一起工作的研究生以及研讨会和国际会议的许多参加者都取得了大量成果。在他的书中,小松发现了一些关于超函数卷积等的新结果。冈泽将线性演化方程和非线性半群的抽象理论应用到具体的方程中,例如Ginzburg-Landau方程。他还建立了线性算子的对数log A的一般理论。Hayashi和Kato研究的非线性偏微分方程主要是演化型的。 Hayashi 证明了许多重要方程解的存在性,并分析了它们在时间趋于无穷大时的渐近行为。加藤建立了解的解析性。中村考虑了弹性体的反问题并将其应用到层析成像中。宫内得到了用实解析方法定义的函数空间的基本结果,在微分方程理论中变得越来越重要。 。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N. Hayashi, H. Hirata: "Global existence of small solutions to nonlinear Schrodinger equations"J. Nonlinear Anal. Theory Method Appl.. 31. 671-685 (1998)
N. Hayashi,H. Hirata:“非线性薛定谔方程小解的全局存在性”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N. Hayashi, E. I. Kaikina, P. I. Naumkin: "Large time behavior of solutions to the generalized derivative nonlinear Schrodinger equation"Dis. Conti. Dyna. Sys.. 5. 93-106 (1999)
N. Hayashi、E. I. Kaikina、P. I. Naumkin:“广义导数非线性薛定谔方程解的大时间行为”Dis。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Komatsu: "The early days of the theory of hyperfunctions and differential equations"Asian J. Math.. 2. xix-xxvi (1999)
H. Komatsu:“超函数和微分方程理论的早期”Asian J. Math.. 2. xix-xxvi (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N. Hayashi, P. I. Naumkin: "On Davey-Stewartson and Ishimori systems"Math. Phys. Anal. Geom.. 2. 53-81 (1999)
N. Hayashi,P. I. Naumkin:“论 Davey-Stewartson 和 Ishimori 系统”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N. Okazawa, T. Yokota: "Perturbations of maximal monotone operators applied to the nonlinear Schrodinger and complex Ginzburg-Landau equations"京都大学数理解析研究所講研録. 1105. 102-120 (1999)
N. Okazawa、T. Yokota:“应用于非线性薛定谔和复杂 Ginzburg-Landau 方程的最大单调算子的扰动”京都大学数学科学研究所讲座记录。1105. 102-120 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOMATSU Hikosaburo其他文献

KOMATSU Hikosaburo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOMATSU Hikosaburo', 18)}}的其他基金

The Study of the History of mathematics as a Branch of Mathematics
数学作为数学分支的史研究
  • 批准号:
    23540124
  • 财政年份:
    2011
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
History of Mathematics from the viewpoint of Mathematics
从数学的角度看数学史
  • 批准号:
    20540107
  • 财政年份:
    2008
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive Study of Functional and Real Analysis
泛函分析和实分析的综合研究
  • 批准号:
    07304014
  • 财政年份:
    1995
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

几类带对数型拉普拉斯算子的椭圆问题的研究
  • 批准号:
    12361043
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
各向异性对数位势算子的性质及应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于形式概念的对数自适应形态学新算子研究及其FPGA实现
  • 批准号:
    61872433
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了