Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations

多模式无线新冠肺炎监测

基本信息

  • 批准号:
    10594946
  • 负责人:
  • 金额:
    $ 110.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-21 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations Abstract: The high aerosolized transmissibility of COVID, long asymptomatic incubation period, and highly variable presentation attributes of the COVID pandemic have proven challenging in many settings where patchwork pandemic responses have disproportionately negatively impacted vulnerable socioeconomic, minority, and disabled sub-populations. Unfortunately, these dire trends are only made more acute in settings that feature populations with limited mobility and little to no ability to self-isolate (dense concentrated populations [DCPs]), such as residential nursing homes, schools, drug rehabilitation services, prison and psychiatric facility populations, and high-frequency essential medical services, such as chemotherapy infusion clinics or dialysis units. In these DCP settings, limited diagnostic testing, prolonged indoor contact, limitations in cleaning and filtration capacities, support staff shortages, pre-existing comorbidities, and lack of effective infectious disease surveillance systems all collude to drive an increased COVID burden in DCPs. From this, it is clear that alternative detection strategies for DCPs are urgently needed to improve local capacity to monitor COVID outbreaks, mitigate their spread, and thus reduce inequitable disease and mortality burdens in these under-resourced and often overcrowded settings. In previous work, we developed a first generation detection system using heart rate data from commercially-available Fitbit Ionic wearable devices to detect the onset of COVID and other infectious diseases up to 10 days before users self-reported symptom onset (overall sensitivity 67% prior to symptom onset). Here, we propose to further develop this system for the improved detection of COVID and other infectious diseases in DCPs using existing wearable fitness devices in a wireless and interoperable digital health framework that centralizes all wearable-derived data on PHD while tailoring its presentation and health event alert system to the IT capabilities and needs of each DCP setting. In this, not only will we adapt our existing infection detection algorithms for each DCP’s particular baseline characteristics, IT infrastructure, and needs, but also use incoming data to further optimize the performance of those algorithms for continuous improvement in the sensitivity, specificity, and alert lead time for COVID onset. This will quickly enable under-resourced DCP support staff to access and use world-class COVID surveillance data in identifying individual infection events, implementing isolation, cleaning, and testing policies, and minimizing transmission, thus reducing the burden of COVID in DCP settings and reducing DCP morbidity and mortality overall.
多模式的无线共互联监测和感染警报 摘要:共证,长期不对称孵育期的高气动传播, Covid大流行的高度可变呈现属性已被证明挑战 拼凑大流行反应的许多设置造成不成比例的负面状态 受影响的脆弱的社会经济,少数群体和残疾的亚人群。不幸的是,这些 可怕的趋势仅在以有限的流动性和有限和 几乎没有自我分离的能力(浓缩人群[DCP]),例如居民 护士房屋,学校,毒品康复服务,监狱和精神病学人口, 和高频基本医疗服务,例如化学疗法输液诊所或透析 单位。在这些DCP设置中,有限的诊断测试,延长室内接触,限制 清洁和过滤能力,支持员工短缺,预先存在合并症以及缺乏 有效的传染病监视系统都碰撞以促进增强的共同负担 在DCP中。由此,很明显,迫切需要针对DCP的替代检测策略 为了提高当地监测卷疫苗的能力,减轻其差异,从而减少 这些资源不足且经常拥挤的疾病和死亡率伯伦斯 设置。在以前的工作中,我们使用心率数据开发了第一代检测系统 从商业上可用的fitbit离子可穿戴设备来检测COVID和其他 在用户自我报告的符号发作之前,传染病长达10天(总体敏感性 症状发作之前67%)。在这里,我们建议进一步开发该系统以进行改进 使用现有的可穿戴健身设备检测DCP中的Covid和其他传染病 在无线和可互操作的数字健康框架中,该框架集中了所有可穿戴的数据 在剪裁其演示文稿和健康事件警报系统的同时,在IT功能和健康事件时 每个DCP设置的需求。在此中,我们不仅会调整现有的感染检测 每个DCP特定基线特征,IT基础架构和需求的算法,但 还使用传入数据进一步优化这些算法的性能 提高敏感性,特异性和警报提前时间的共同发作时间。这将很快 使资源不足的DCP支持人员访问和使用世界一流的Covid监视 识别单个感染事件,实施隔离,清洁和测试的数据 政策,并最小化传播,从而减少了DCP设置中的covid的伯宁 总体上降低了DCP的发病率和死亡率。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance effectiveness of vital parameter combinations for early warning of sepsis-an exhaustive study using machine learning.
  • DOI:
    10.1093/jamiaopen/ooac080
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Rangan, Ekanath Srihari;Pathinarupothi, Rahul Krishnan;Anand, Kanwaljeet J. S.;Snyder, Michael P.
  • 通讯作者:
    Snyder, Michael P.
共 1 条
  • 1
前往

MICHAEL P. SNYDER的其他基金

Precancer Atlas of Familial Adenomatous Polyposis
家族性腺瘤性息肉病癌前图谱
  • 批准号:
    10900834
    10900834
  • 财政年份:
    2023
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Organ Specific Project
器官特定项目
  • 批准号:
    10709580
    10709580
  • 财政年份:
    2022
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Organ Specific Project
器官特定项目
  • 批准号:
    10531083
    10531083
  • 财政年份:
    2022
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
PRODUCTION CENTER FOR MAPPING REGULATORY REGIONS OF THE HUMAN GENOME
人类基因组监管区域图谱制作中心
  • 批准号:
    10241080
    10241080
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
The Chromium Connect, an integrated and robotic system to automate library preparation for single-cell RNA-Seq
Chromium Connect,一个集成的机器人系统,用于自动进行单细胞 RNA 测序的文库制备
  • 批准号:
    10171302
    10171302
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Identifying Multidimensional Omics Profiles Associated with Cardiovascular and Pulmonary Responses to Chronic and Acute Air Pollution Exposure (Project 2) for AIRHEALTH Study
确定与慢性和急性空气污染暴露的心血管和肺部反应相关的多维组学概况(项目 2),用于空气健康研究
  • 批准号:
    10460331
    10460331
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Identifying Multidimensional Omics Profiles Associated with Cardiovascular and Pulmonary Responses to Chronic and Acute Air Pollution Exposure (Project 2) for AIRHEALTH Study
确定与慢性和急性空气污染暴露的心血管和肺部反应相关的多维组学概况(项目 2),用于空气健康研究
  • 批准号:
    10269335
    10269335
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
多模式无线新冠肺炎监测
  • 批准号:
    10320756
    10320756
  • 财政年份:
    2020
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
多模式无线新冠肺炎监测
  • 批准号:
    10274232
    10274232
  • 财政年份:
    2020
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Genomics Diversity Summer Program (GDSP) at Stanford
斯坦福大学基因组多样性暑期项目 (GDSP)
  • 批准号:
    10408049
    10408049
  • 财政年份:
    2019
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
  • 批准号:
    10647991
    10647991
  • 财政年份:
    2023
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Connecting the universe of proteins to address annotation inequality in the microbial proteome
连接蛋白质领域以解决微生物蛋白质组中的注释不平等问题
  • 批准号:
    10658439
    10658439
  • 财政年份:
    2023
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别:
Clinical biomarker for early prediction of chemotherapy-induced peripheral neuropathy
早期预测化疗引起的周围神经病变的临床生物标志物
  • 批准号:
    10604018
    10604018
  • 财政年份:
    2023
  • 资助金额:
    $ 110.58万
    $ 110.58万
  • 项目类别: