Mechanisms of voltage regulation of membrane transport
膜运输的电压调节机制
基本信息
- 批准号:10595025
- 负责人:
- 金额:$ 34.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsActivities of Daily LivingAddressAffectAngelman SyndromeArchitectureAttention deficit hyperactivity disorderBindingBiochemicalBiological AssayBiophysical ProcessC-terminalCCL21 geneCardiacCationsCell ProliferationCellsChargeChemicalsCholineComplementCouplesCryoelectron MicroscopyCuesCyclic AMPCyclic GMPCyclic NucleotidesCytoplasmCytoplasmic TailDNA Sequence AlterationDataDependenceDetergentsDevelopmentDiabetes MellitusDigestive System DisordersDiseaseDrug DesignElectrophysiology (science)EndosomesEnzymesEpilepsyExhibitsFamilyFamily memberFluorescenceFoundationsFunctional disorderHealthHeart failureHomeostasisHumanHydrogenHypertensionInterventionInvestigationIon Channel GatingIon ExchangeIon TransportIonsLengthLigandsLinkLiposomesMale InfertilityMalignant NeoplasmsMapsMeasuresMediatingMembraneMembrane ProteinsMembrane Transport ProteinsMethodsMicellesModelingMolecularMolecular ConformationMovementMusMuscular DystrophiesOrthologous GenePathologicPeptide HydrolasesPhosphoric Monoester HydrolasesPhotobleachingPhysiological ProcessesPlayPoint MutationProtein FamilyProteinsProtonsRegulationReperfusion InjuryResolutionRoleSea UrchinsSodiumSodium ChlorideSperm CapacitationSperm MotilityStimulusStructureSystemTechniquesTestingThermodynamicsTransmembrane TransportVariantautism spectrum disorderdensitydesigndimerelectric fieldexperimental studyinnovationinsightinterfacialmembermutantnovelparticlepharmacologicpolypeptidereconstitutionreconstructionsingle moleculesodium ionsperm celltherapy designvoltage
项目摘要
Mechanisms of voltage regulation of membrane transport
SLC9 family of membrane transporters couple the import of sodium ions to export of protons.
They are vital for regulation of cytoplasmic and endosomal pH, which in turn affect several
physiological processes. Their disfunction has been linked to many diseases such as diabetes,
hypertension, heart failure and cancer. Genetic mutations in specific SLC9 members have also
been associated with Angelman-syndrome like disorders, ADHD, familial autism, epilepsies and
male infertility. The SLC9C1 is a unique member of the SLC9 family. Unlike other SLC9s which
feature a membrane delimited sodium-hydrogen exchange (NHE) domain and a usually short and
relatively unstructured C-terminal soluble domain, SLC9C1 combines an NHE, a voltage-sensing
domain (VSD) and a cyclic nucleotide binding domain (CNBD), interconnected via long, structured
linkers, in a single polypeptide. Recent foundational experiments have revealed that membrane
hyperpolarization and binding of cyclic nucleotides potentiates ion transport via SLC9C1. Its
unique design makes it impossible to predict how voltage and ligand regulation of this protein is
manifested at a structural level. SLC9C1 exhibits sperm-specific expression and has been shown
to be critical for sperm motility in mouse and humans. Sperm motility is robustly modulated by
changes in membrane voltage, intracellular cAMP levels and pH and all these stimuli influence
SLC9C1 mediated ion exchange directly, making it vital to understand the molecular
underpinnings of such diverse regulation. To this end, in this proposal we will integrate single-
particle cryo-electron microscopy and reconstruction techniques with biochemical and
electrophysiological methods to explore key biophysical mechanisms of SLC9C1. In Aim 1, we
will determine the first high-resolution structure of SLC9C1 and identify the key interactions
governing its organization. In Aim 2, we will elucidate the structural rearrangements in SLC9C1
triggered by cyclic nucleotide binding and use electrophysiology to test the role of a key interface
in mediating the regulatory effects of the CNBD. In Aim 3, we will determine how pH and permeant
ions affect the structure and function of SLC9C1. The proposal has a strong scientific foundation
built on our rigorous preliminary studies. It is innovative as it will provide the first snapshots of a
novel membrane protein in different conformations and test provocative hypotheses on the
mechanisms of voltage and cyclic nucleotide regulation of a transporter. The insights obtained
from our studies will aid structure-based drug design for treatment of male infertility. It will also
have broad implications on the structural and functional mechanisms of SLC9 regulation by their
cytoplasmic domains further underscoring its importance for human health.
膜运输的电压调节机制
SLC9 膜转运蛋白家族将钠离子的输入与质子的输出耦合起来。
它们对于细胞质和内体 pH 值的调节至关重要,进而影响多种
生理过程。它们的功能障碍与许多疾病有关,例如糖尿病、
高血压、心力衰竭和癌症。特定 SLC9 成员的基因突变也已
与天使综合征(Angelman-syndrome)如疾病、多动症(ADHD)、家族性自闭症、癫痫症和
男性不育症。 SLC9C1 是 SLC9 系列中的独特成员。与其他 SLC9 不同的是
具有膜分隔的钠氢交换(NHE)结构域和通常短且
相对非结构化的 C 端可溶性结构域,SLC9C1 结合了 NHE(电压传感)
结构域(VSD)和环核苷酸结合结构域(CNBD),通过长的结构化结构相互连接
连接子,在单个多肽中。最近的基础实验表明,膜
环核苷酸的超极化和结合增强了通过 SLC9C1 的离子传输。它是
独特的设计使得无法预测该蛋白质的电压和配体调节情况
表现在结构层面。 SLC9C1 表现出精子特异性表达并已被证明
对小鼠和人类的精子活力至关重要。精子活力受到强有力的调节
膜电压、细胞内 cAMP 水平和 pH 的变化以及所有这些刺激的影响
SLC9C1 直接介导离子交换,因此了解分子交换至关重要
这种多样化监管的基础。为此,在本提案中,我们将整合单一
粒子冷冻电子显微镜和生物化学重建技术
电生理方法探索 SLC9C1 的关键生物物理机制。在目标 1 中,我们
将确定 SLC9C1 的第一个高分辨率结构并确定关键相互作用
管理其组织。在目标 2 中,我们将阐明 SLC9C1 中的结构重排
由环核苷酸结合触发并使用电生理学来测试关键界面的作用
调解 CNBD 的监管作用。在目标 3 中,我们将确定 pH 值和渗透性
离子影响 SLC9C1 的结构和功能。该提案具有坚实的科学基础
建立在我们严格的初步研究之上。它是创新的,因为它将提供第一个快照
不同构象的新型膜蛋白并测试有关的挑衅性假设
转运蛋白的电压和环核苷酸调节机制。获得的见解
我们的研究将有助于基于结构的药物设计,用于治疗男性不育症。它还将
对 SLC9 调控的结构和功能机制具有广泛的影响
细胞质结构域进一步强调了其对人类健康的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandipan Chowdhury其他文献
Sandipan Chowdhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandipan Chowdhury', 18)}}的其他基金
Mechanisms of voltage regulation of membrane transport
膜运输的电压调节机制
- 批准号:
10417430 - 财政年份:2022
- 资助金额:
$ 34.33万 - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of voltage regulation of membrane transport
膜运输的电压调节机制
- 批准号:
10417430 - 财政年份:2022
- 资助金额:
$ 34.33万 - 项目类别:
Priming with High-Frequency Trans-spinal Stimulation to Augment Locomotor Training Benefits in Spinal Cord Injury
通过高频经脊柱刺激增强脊髓损伤的运动训练效果
- 批准号:
10394311 - 财政年份:2020
- 资助金额:
$ 34.33万 - 项目类别:
Myoelectrolytically controlled device in acute rehabilitation after stroke
肌电控制装置在中风后急性康复中的应用
- 批准号:
10265518 - 财政年份:2020
- 资助金额:
$ 34.33万 - 项目类别:
Priming with High-Frequency Trans-spinal Stimulation to Augment Locomotor Training Benefits in Spinal Cord Injury
通过高频经脊柱刺激增强脊髓损伤的运动训练效果
- 批准号:
10187619 - 财政年份:2020
- 资助金额:
$ 34.33万 - 项目类别:
Myoelectrolytically controlled device in acute rehabilitation after stroke
肌电控制装置在中风后急性康复中的应用
- 批准号:
10705555 - 财政年份:2020
- 资助金额:
$ 34.33万 - 项目类别: