Tools to determine and analyze the structures of molecular machines in motion

确定和分析运动中分子机器结构的工具

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Tools to determine and analyze the structures of molecular machines in motion Single particle cryo-electron microscopy (cryo-EM) has transformed our ability to rapidly determine high resolution structures of static, structurally homogeneous macromolecular complexes. However, we have not realized cryo-EM’s potential to uncover the full ensemble of heterogeneous structures these molecules adopt as they function. The overall objective of this work is to develop novel cryo-EM image processing tools to: 1) determine the complete ensemble of structural states adopted by imaged complexes; 2) quantify the relative abundance of these states; 3) monitor how the distribution of these states changes as the machine functions; and 4) use this information to understand the molecular mechanism of how these machines assemble and function. This objective is important as visualizing structural ensembles can be vital in developing and testing hypotheses for how these machines function, and in developing therapeutics to modulate their activity. Here, we specifically aim to develop two tools to facilitate achieving these overall objectives. First, we will generate ‘benchmark’ datasets that will be distributed to the methods development community to aid in building and quantitatively assessing of the fidelity of different approaches to reconstruct 3D density maps from single particle cryo-EM data. These benchmark datasets will include macromolecular complexes bearing elements of structural heterogeneity we have specifically designed for this purpose, and that we have biochemically assembled and imaged. Additionally, it will design, implement, and validate a machine learning-based computational tool that more realistically simulates the imaging process than existent software, thereby enabling users to rapidly construct custom synthetic benchmark datasets to test specific aspects of their own algorithms. Recently, as a proof-of-concept, we published the first method using deep neural networks to perform 3D reconstruction from single particle data, and this approach was particularly efficacious is revealing heterogeneous structures. Thus, our second aim is to develop this approach into a complete software package enabling users to readily reconstruct hundreds-to-thousands of density maps from a single dataset; to implement tools to focus the analysis on specific structural regions; and to deploy methods guiding the interpretation of the density maps and the construction of ensembles of associated atomic models. This work in innovative in its objective to analyze heterogeneous structural ensembles as opposed to static structures at high resolution; in our approach to model model conformational changes as originating from a continuous distribution of structures as opposed to isolated, discrete states; and in our application of deep learning methods to both the generation of benchmark datasets and in the reconstruction process itself. As a proof-of-concept, our reconstruction approach has proven significant as evidenced by its recent application in multiple structural studies, and we expect the tools we propose to develop here will be broadly impactful on a wide-array of NIH-funded research programs that rely on single particle cryo-EM.
项目摘要/摘要 确定和分析分子机器中的结构的工具 单粒子冷冻电子显微镜(Cryo-EM)已转化了我们快速确定高的能力 静态,结构均匀分子复合物的分辨率结构。但是,我们没有 认识到Cryo-Em有潜力揭示这些分子所采用的全异构结构的完整合奏 它们起作用。这项工作的总体目的是开发新型的Cryo-Em图像处理工具:1) 确定成像复合物采用的结构状态的完整合奏; 2)量化相对 这些状态的抽象; 3)监控这些状态的分布如何随着机器的功能而变化; 4)使用此信息来了解这些机器如何组装和 功能。这个目标很重要,因为可视化结构合奏对于开发和测试至关重要 假设这些机器如何发挥作用以及开发用于调节其活性的治疗。在这里,我们 首先,我们将生成 将分发给方法开发社区的“基准”数据集,以帮助建造和 定量评估不同方法的保真度,以重建单个粒子的3D密度图 冷冻-EM数据。这些基准数据集将包括带有结构元素的大分子复合物 我们专门为此目的设计的异质性,并且我们已经组装了生化,并且 成像。此外,它将设计,实现和验证基于机器学习的计算工具 比现有软件更现实地模拟成像过程,从而使用户能够快速 构建自定义合成基准数据集以测试其自己算法的特定方面。最近,作为 概念证明,我们发布了第一种使用深神经网络来执行3D重建的方法 单个粒子数据,这种方法特别有效地揭示了异质结构。那, 我们的第二个目的是将这种方法开发为完整的软件包,使用户可以轻松地 从一个数据集中重建了数十万的密度图;实施工具以关注 对特定结构区域的分析;并部署指导密度图的解释和 相关原子模型的集合的构建。这项创新的工作目的是分析 与高分辨率的静态结构相反,异质结构合奏;在我们的模型方法中 模型会议变化是由结构的连续分布而不是孤立的 离散国家;以及我们将深度学习方法应用于基准数据集的生成 以及重建过程本身。作为概念证明,我们的重建方法已证明 它在多种结构研究中的最新应用所证明的是重要的,我们希望我们的工具 在这里开发的提议将对依赖NIH资助的研究计划的广泛阵容具有广泛的影响 单粒子冷冻EM。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Harry Davis其他文献

Joseph Harry Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Harry Davis', 18)}}的其他基金

Tools to determine and analyze the structures of molecular machines in motion
确定和分析运动中分子机器结构的工具
  • 批准号:
    10345392
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    $ 31.95万
  • 项目类别:
High-resolution extended-depth phase-engineered objectives to accelerate spatial 'omics R&D through computational optics
高分辨率扩展深度阶段工程物镜加速空间组学研究
  • 批准号:
    10761173
  • 财政年份:
    2023
  • 资助金额:
    $ 31.95万
  • 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
  • 批准号:
    10634911
  • 财政年份:
    2023
  • 资助金额:
    $ 31.95万
  • 项目类别:
CranioRate: An imaging-based, deep-phenotyping analysis toolset, repository, and online clinician interface for craniosynostosis
CranioRate:基于成像的深度表型分析工具集、存储库和在线临床医生界面,用于颅缝早闭
  • 批准号:
    10568654
  • 财政年份:
    2023
  • 资助金额:
    $ 31.95万
  • 项目类别:
Tools to determine and analyze the structures of molecular machines in motion
确定和分析运动中分子机器结构的工具
  • 批准号:
    10345392
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了