Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
基本信息
- 批准号:10557201
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAffordable Care ActAgeAmericanAreaBig DataBiometryBlack AmericanBlack PopulationsBlack raceBuprenorphineCaringCharacteristicsClient satisfactionClinical TreatmentCommunitiesCommunity SurveysComplementComputerized Medical RecordCritical CareDataDatabasesDevelopment PlansEffectivenessEligibility DeterminationEpidemiologyEquityEthnic OriginEthnic PopulationFaceFoundationsHealthHealth PersonnelHealth ResourcesHealth Services AccessibilityHealthcare SystemsIndividualInterventionMachine LearningMeasuresMedicalMental HealthMentorshipMethodsMinority GroupsModelingNatural experimentOpioidPatientsPerceptionPersonsPharmaceutical PreparationsPhasePopulationPrediction of Response to TherapyProviderPublic HealthRaceReduce health disparitiesResearchSpecialistSubstance Use DisorderTherapeuticTrainingTreatment outcomeVeteransVeterans Health AdministrationVisitWorkbarrier to careblack patientcareercareer developmentcaucasian Americandata warehousedesignelectronic dataethnic disparityexperienceforestimprovedimproved outcomeinnovationmachine learning methodmedication for opioid use disordermortalitymultidisciplinarymultiple data sourcesnovel strategiesopioid overdoseopioid use disorderracial biasracial disparityracial populationskillssocialstandard of carestructural determinantssuccesstreatment disparity
项目摘要
PROJECT SUMMARY
The opioid overdose crisis emerged in predominantly White communities, but the opioid-related
mortality rate is increasing most rapidly in the Black population. A key driver of the crisis is opioid use disorder,
which affects over 2 million Americans. Despite their effectiveness, medications for opioid use disorder remain
underused, especially among Black Americans. Compared to White Americans, Black Americans have lower
access to medications for opioid use disorder, are one-third as likely to initiate treatment, and have lower
retention in care. Black Americans face unique structural obstacles to care, such as mistrust of the health care
system, lack of representation among medical providers, and racially-biased providers’ perceptions. There is a
critical gap in our understanding of the structural factors associated with treatment initiation and retention in
care for Black patients with OUD. The scientific objective of this research plan is to identify modifiable
structural factors at the community, provider, and facility levels that affect treatment initiation and retention in
care for opioid use disorder in the Black population. This innovative project proposes to leverage machine
learning-based causal inference methods with a combination of large national electronic medical records,
corporate data warehouses, and publicly available data. By combining multiple data sources, this project will
empirically evaluate modifiable factors such as provider characteristics (e.g., years of experience, patient
satisfaction scores), facility characteristics (e.g., mental health staffing to patient ratios, number of
buprenorphine-eligible prescribers), and patient-provider characteristics (e.g., number of previous visits or
interactions). While focused on promoting equitable access to treatment for opioid use disorder in Black
Americans, the public health implications of this proposal are expected to apply broadly to ameliorate the
overall health burden of substance use disorders and reduce health disparities. This research plan is
complemented by a career development plan that builds on the applicant’s background in epidemiology and
biostatistics. Specifically, this career development plan outlines new training in three areas: (1) the clinical
treatment of opioid use disorder, (2) analysis of the massive data of electronic medical records, and (3)
machine learning-based causal inference methods. The combined research and training plan will prepare the
applicant for a successful independent research career identifying, evaluating, and implementing multilevel
interventions to reduce racial/ethnic inequalities in treatment for substance use disorders.
项目摘要
阿片类药物过量危机主要是白人社区,但与阿片类药物有关
黑人人口中的死亡率最快。危机的主要驱动力是阿片类药物使用障碍,
影响超过200万美国人。尽管它们有效,但阿片类药物使用障碍的药物仍然
未充分利用,尤其是在黑人美国人中。与白人美国人相比,黑人美国人的较低
获得阿片类药物使用障碍的药物,可能启动治疗的可能性三分之一,并且较低
保留护理。黑人美国人面临着独特的结构性护理障碍,例如对医疗保健的不信任
系统,医疗提供者缺乏代表性以及大致偏见的提供者的看法。有一个
我们对与治疗计划相关的结构因素的理解和保留率的关键差距
照顾黑人患者。该研究计划的科学目标是确定可修改的
社区,提供商和设施水平的结构性因素,影响治疗计划和保留
护理黑人人群中阿片类药物使用障碍。这项创新的项目提案要利用机器
基于学习的因果推理方法,结合了大型国家电子病历,
公司数据仓库和公开数据。通过组合多个数据源,该项目将
经验评估可修改因素,例如提供商特征(例如,经验年,患者
满意度得分),设施特征(例如,心理健康人员与患者比例,数量
丁丙诺啡符合条件的处方者)和患者提供的特征(例如,先前的访问次数或
互动)。虽然专注于促进黑色阿片类药物使用障碍的公平治疗
美国人,这一提案的公共卫生影响预计将广泛适用于改善
物质使用障碍的总体健康燃烧并减少健康差异。该研究计划是
由一项职业发展计划完成,该计划以申请人的流行病学背景为基础
生物统计学。特别是,该职业发展计划在三个领域概述了新培训:(1)临床
治疗阿片类药物使用障碍,(2)分析电子病历的大量数据,以及(3)
基于机器学习的因果推理方法。联合研究和培训计划将为
成功的独立研究职业的申请人识别,评估和实施多级
减少种族/族裔不平等的干预措施,以治疗药物使用障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathew Vinhhoa Kiang其他文献
Mathew Vinhhoa Kiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathew Vinhhoa Kiang', 18)}}的其他基金
Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
- 批准号:
10514673 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
- 批准号:
10190881 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
- 批准号:
10039535 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Investigating Disparities in End-of-Life Care in Undocumented Hispanic Immigrants
调查无证西班牙裔移民临终关怀方面的差异
- 批准号:
10593462 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Reducing Racial and Ethnic Disparities in Maternal Health through Policy Interventions
通过政策干预减少孕产妇健康方面的种族和民族差异
- 批准号:
10635586 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Disparities in Quality Healthcare Among Childhood Cancer Survivors: Role of Medicaid
儿童癌症幸存者的医疗质量差异:医疗补助的作用
- 批准号:
10722895 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Closing Racial Disparities Through the Affordable Care Act: Medicaid Expansion, Marketplaces, Federally Qualified Community Health Centers
通过《平价医疗法案》缩小种族差异:医疗补助扩张、市场、联邦合格的社区卫生中心
- 批准号:
10717603 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Increasing Access to USPSTF-Recommended Obesity Care for Youth and Adults Who Are Recipients of Medicaid: Evaluation of a Comprehensive Multidisciplinary Obesity Care Training Program in FQHCs
增加获得 USPSTF 建议的医疗补助青少年和成人肥胖护理的机会:对 FQHC 综合性多学科肥胖护理培训计划的评估
- 批准号:
10737453 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: