Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
基本信息
- 批准号:10557201
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAffordable Care ActAgeAmericanAreaBig DataBiometryBlack AmericanBlack PopulationsBlack raceBuprenorphineCaringCharacteristicsClient satisfactionClinical TreatmentCommunitiesCommunity SurveysComplementComputerized Medical RecordCritical CareDataDatabasesDevelopment PlansEffectivenessEligibility DeterminationEpidemiologyEquityEthnic OriginEthnic PopulationFaceFoundationsHealthHealth PersonnelHealth ResourcesHealth Services AccessibilityHealthcare SystemsIndividualInterventionMachine LearningMeasuresMedicalMental HealthMentorshipMethodsMinority GroupsModelingNatural experimentOpioidPatientsPerceptionPersonsPharmaceutical PreparationsPhasePopulationPrediction of Response to TherapyProviderPublic HealthRaceReduce health disparitiesResearchSpecialistSubstance Use DisorderTherapeuticTrainingTreatment outcomeVeteransVeterans Health AdministrationVisitWorkbarrier to careblack patientcareercareer developmentcaucasian Americandata warehousedesignelectronic dataethnic disparityexperienceforestimprovedimproved outcomeinnovationmachine learning methodmedication for opioid use disordermortalitymultidisciplinarymultiple data sourcesnovel strategiesopioid overdoseopioid use disorderracial biasracial disparityracial populationskillssocialstandard of carestructural determinantssuccesstreatment disparity
项目摘要
PROJECT SUMMARY
The opioid overdose crisis emerged in predominantly White communities, but the opioid-related
mortality rate is increasing most rapidly in the Black population. A key driver of the crisis is opioid use disorder,
which affects over 2 million Americans. Despite their effectiveness, medications for opioid use disorder remain
underused, especially among Black Americans. Compared to White Americans, Black Americans have lower
access to medications for opioid use disorder, are one-third as likely to initiate treatment, and have lower
retention in care. Black Americans face unique structural obstacles to care, such as mistrust of the health care
system, lack of representation among medical providers, and racially-biased providers’ perceptions. There is a
critical gap in our understanding of the structural factors associated with treatment initiation and retention in
care for Black patients with OUD. The scientific objective of this research plan is to identify modifiable
structural factors at the community, provider, and facility levels that affect treatment initiation and retention in
care for opioid use disorder in the Black population. This innovative project proposes to leverage machine
learning-based causal inference methods with a combination of large national electronic medical records,
corporate data warehouses, and publicly available data. By combining multiple data sources, this project will
empirically evaluate modifiable factors such as provider characteristics (e.g., years of experience, patient
satisfaction scores), facility characteristics (e.g., mental health staffing to patient ratios, number of
buprenorphine-eligible prescribers), and patient-provider characteristics (e.g., number of previous visits or
interactions). While focused on promoting equitable access to treatment for opioid use disorder in Black
Americans, the public health implications of this proposal are expected to apply broadly to ameliorate the
overall health burden of substance use disorders and reduce health disparities. This research plan is
complemented by a career development plan that builds on the applicant’s background in epidemiology and
biostatistics. Specifically, this career development plan outlines new training in three areas: (1) the clinical
treatment of opioid use disorder, (2) analysis of the massive data of electronic medical records, and (3)
machine learning-based causal inference methods. The combined research and training plan will prepare the
applicant for a successful independent research career identifying, evaluating, and implementing multilevel
interventions to reduce racial/ethnic inequalities in treatment for substance use disorders.
项目概要
阿片类药物过量危机出现在以白人为主的社区,但与阿片类药物相关的
黑人死亡率增长最快,危机的一个关键驱动因素是阿片类药物使用障碍,
尽管治疗阿片类药物使用障碍的药物有效,但影响了超过 200 万美国人。
未得到充分利用,特别是在美国黑人中,与美国白人相比,美国黑人的利用率较低。
获得阿片类药物使用障碍药物的机会,开始治疗的可能性是三分之一,并且有较低的
美国黑人在护理方面面临独特的结构性障碍,例如对医疗保健的不信任。
系统、医疗提供者缺乏代表性以及提供者存在种族偏见的看法。
我们对与治疗开始和保留相关的结构因素的理解存在重大差距
该研究计划的科学目标是确定可修改的方法。
影响治疗开始和保留的社区、提供者和设施层面的结构性因素
这个创新项目建议利用机器来治疗黑人群体中的阿片类药物使用障碍。
基于学习的因果推理方法结合全国大型电子病历,
通过结合多个数据源,该项目将整合企业数据仓库和公开数据。
根据经验评估可修改的因素,例如提供者特征(例如,多年的经验、患者
满意度得分)、设施特征(例如,心理健康人员与患者的比例、
丁丙诺啡合格的处方者),以及患者提供者的特征(例如,之前就诊的次数或
相互作用),同时致力于促进黑人公平获得阿片类药物使用障碍的治疗。
美国人认为,该提案对公共卫生的影响预计将广泛适用,以改善
该研究计划旨在减轻物质使用障碍的总体健康负担并减少健康差异。
辅之以基于申请人的流行病学背景的职业发展计划
具体来说,该职业发展计划概述了三个领域的新培训:(1)临床。
阿片类药物使用障碍的治疗,(2)电子病历海量数据分析,以及(3)
基于机器学习的因果推理方法将结合研究和培训计划来准备。
申请人成功的独立研究生涯识别、评估和实施多层次
减少药物滥用障碍治疗中种族/民族不平等的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathew Vinhhoa Kiang其他文献
Mathew Vinhhoa Kiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathew Vinhhoa Kiang', 18)}}的其他基金
Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
- 批准号:
10514673 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
- 批准号:
10190881 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Reducing racial disparities in the treatment of opioid use disorder using machine learning-based causal analysis
使用基于机器学习的因果分析减少阿片类药物使用障碍治疗中的种族差异
- 批准号:
10039535 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Investigating Disparities in End-of-Life Care in Undocumented Hispanic Immigrants
调查无证西班牙裔移民临终关怀方面的差异
- 批准号:
10593462 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Reducing Racial and Ethnic Disparities in Maternal Health through Policy Interventions
通过政策干预减少孕产妇健康方面的种族和民族差异
- 批准号:
10635586 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Disparities in Quality Healthcare Among Childhood Cancer Survivors: Role of Medicaid
儿童癌症幸存者的医疗质量差异:医疗补助的作用
- 批准号:
10722895 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Closing Racial Disparities Through the Affordable Care Act: Medicaid Expansion, Marketplaces, Federally Qualified Community Health Centers
通过《平价医疗法案》缩小种族差异:医疗补助扩张、市场、联邦合格的社区卫生中心
- 批准号:
10717603 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Increasing Access to USPSTF-Recommended Obesity Care for Youth and Adults Who Are Recipients of Medicaid: Evaluation of a Comprehensive Multidisciplinary Obesity Care Training Program in FQHCs
增加获得 USPSTF 建议的医疗补助青少年和成人肥胖护理的机会:对 FQHC 综合性多学科肥胖护理培训计划的评估
- 批准号:
10737453 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: