Embryonic vascular stem-progenitors for treatment of ischemic retinopathies
用于治疗缺血性视网膜病的胚胎血管干祖细胞
基本信息
- 批准号:10557078
- 负责人:
- 金额:$ 52.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimal ModelAutologousBackBlindnessBlood VesselsBlood capillariesCXCR4 geneCell LineCell ReprogrammingCell TherapyCellsCessation of lifeDNA MethylationDefectDevelopmentDiabetes MellitusDiabetic RetinopathyDiseaseEmbryoEmbryo TransferEndothelial CellsEngraftmentEpiblastEpigenetic ProcessEyeFibroblastsFunctional RegenerationFutureGene ExpressionGenerationsGenome StabilityHistonesHumanIn VitroIschemiaLegal patentLesionMCAM geneMediatingMemoryMetabolicModelingMolecularMusNatural regenerationNeural RetinaPARP inhibitionPECAM1 genePathologicPathologyPathway interactionsPatientsPericytesPoly(ADP-ribose) Polymerase InhibitorRegenerative MedicineReperfusion InjuryReperfusion TherapyReportingRetinaRetinal DiseasesSecondary toTankyraseTherapeuticTissue DifferentiationTissuesTransplant RecipientsVascular DiseasesVascular Endothelial CellVascularizationVisioncell bankderepressiondiabeticeffectiveness evaluationendothelial stem cellepigenetic memoryepigenomefunctional improvementgenome integrityimprovedin vivoin vivo engraftmentin vivo evaluationinduced pluripotent stem cellmigrationmouse modelneuralneuron apoptosisneurovascular injurynovelpluripotencypre-clinicalprogenitorpromoterregeneration functionregeneration potentialrepairedretina blood vessel structureretinal damageretinal ischemiaself-renewalsmall moleculestemstem cell expansionstem cell self renewalstem cellstherapeutic evaluationtype I diabeticvein occlusion
项目摘要
Branch vein occlusion (BVO) and diabetic retinopathy (DR) are major causes of new onset blindness in
the US. These vascular disorders result in acellular capillaries secondary to ischemic death of retinal
vascular endothelial cells (ECs) and contractile pericytes. If acellular retinal blood vessels could be
regenerated with autologous or cell-banked self-renewing vascular-pericytic stem-progenitors, ischemia
could be relieved, and end stage blindness reversed or stabilized in these vasculopathies. Our group
established the feasibility of transplanting patient-specific embryonic vascular progenitors (VP) with
pericytic potential directly into the eye, following differentiation from human induced pluripotent stem
cells (hiPSC). We also established a novel tankyrase/PARP inhibitor-based small molecule cocktail for
reversion of conventional, lineage-primed hiPSC to ‘naïve’ hiPSCs (N-hiPSCs) that possessed a more
primitive epiblast state with higher functional pluripotency. The regenerative potential of naïve VP (N-VP)
differentiated from normal and diseased N-hiPSC was significantly more prolific relative to primed,
conventional hiPSC. For example, naive diabetic vascular progenitors (N-DVP) differentiated from
patient-specific naïve-reverted diabetic hiPSC (N-DhiPSC) possessed higher vascular functionality,
maintained greater genomic stability, harbored decreased lineage-primed gene expression, and were
more efficient in migrating to and re-vascularizing the deep neural layers of the ischemic retina than
isogenic diabetic vascular progenitors (DVP) from conventional, primed DhiPSC. In this proposal, we
develop the potential of N-VP for treatment of ischemic retinopathies. We will employ a humanized
animal model that mimics retinal ischemia [i.e., ischemia/reperfusion (I/R) injury] for testing the
therapeutic capacity of human N-DVP to form patent blood vessels, rescue ischemic retina, and improve
visual function. We will test the in vivo developmental potential of N-DVP to efficiently differentiate to
ECs and multipotent pericytic stem-progenitors following long-term engraftment in an ischemia-damaged
retinal niche. We will also aim to further improve our approach for generating unlimited amounts of
epigenetically-plastic, pristine, non-diseased naïve embryonic progenitors for cellular therapies by
probing how N-hiPSC reprogramming erases dysfunctional epigenetic donor cell memory and diabetes-
associated metabolic aberrations with greater efficiency than conventional hiPSC reprogramming. These
studies will outline a future pathway for the efficient synchronous generation of naïve vascular and
retinal stem-progenitors from the same N-hiPSC line for a more effective and comprehensive
regeneration of diseased retina. More broadly, we will develop the pre-clinical utility of this novel class of
human vascular-pericytic stem cells that possess high epigenetic plasticity, improved functionality, and
potentially high impact for ocular regenerative medicine.
分支静脉阻塞(BVO)和糖尿病视网膜病变(DR)是新发失明的主要原因
这些血管疾病导致继发于视网膜缺血性死亡的无细胞毛细血管。
血管内皮细胞(EC)和收缩周细胞如果无细胞视网膜血管可能是。
用自体或细胞库自我更新血管周细胞干祖细胞再生,缺血
我们组的这些血管病可以得到缓解,并且终末期失明得到逆转或稳定。
建立了移植患者特异性胚胎血管祖细胞(VP)的可行性
从人类诱导多能干细胞分化后,周细胞电位直接进入眼睛
我们还建立了一种基于坦科聚合酶/PARP 抑制剂的新型小分子混合物。
传统的、谱系引发的 hiPSC 恢复为“原始”hiPSC(N-hiPSC),其具有更多
原始外胚层状态,具有较高的功能多能性。幼稚 VP (N-VP) 的再生潜力。
与引发的、
例如,原始糖尿病血管祖细胞(N-DVP)分化为传统的 hiPSC。
患者特异性的幼稚回复型糖尿病 hiPSC (N-DhiPSC) 具有更高的血管功能,
保持更高的基因组稳定性,降低谱系引发的基因表达,并且
与缺血性视网膜深层神经层的迁移和血管重建相比,其效率更高
在本提案中,我们从传统的、引发的 DhiPSC 中获得同基因糖尿病血管祖细胞 (DVP)。
开发 N-VP 治疗缺血性视网膜病的潜力,我们将采用人源化药物。
模拟视网膜缺血[即缺血/再灌注(I/R)损伤]的动物模型,用于测试
人 N-DVP 形成通畅血管、挽救缺血性视网膜、改善视力的治疗能力
我们将测试 N-DVP 的体内发育潜力,以有效分化为
长期植入缺血损伤后的内皮细胞和多能周细胞干祖细胞
我们还将致力于进一步改进我们产生无限量的方法。
表观遗传可塑性、原始、无病的幼稚胚胎祖细胞,用于细胞治疗
探究 N-hiPSC 重编程如何消除功能失调的表观遗传供体细胞记忆和糖尿病 -
与传统 hiPSC 重编程相比,相关代谢异常的效率更高。
研究将勾勒出一条未来有效同步生成幼稚血管和
来自同一 N-hiPSC 系的视网膜干祖细胞,以获得更有效和更全面的
更广泛地说,我们将开发这类新型药物的临床前用途。
人类血管周细胞干细胞具有高表观遗传可塑性、改进的功能和
对眼再生医学具有潜在的巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELIAS T. ZAMBIDIS其他文献
ELIAS T. ZAMBIDIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELIAS T. ZAMBIDIS', 18)}}的其他基金
Embryonic vascular stem-progenitors for treatment of ischemic retinopathies
用于治疗缺血性视网膜病的胚胎血管干祖细胞
- 批准号:
10334409 - 财政年份:2021
- 资助金额:
$ 52.92万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
9059743 - 财政年份:2015
- 资助金额:
$ 52.92万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
9220844 - 财政年份:2015
- 资助金额:
$ 52.92万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
8797928 - 财政年份:2015
- 资助金额:
$ 52.92万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
8758998 - 财政年份:2014
- 资助金额:
$ 52.92万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
8892184 - 财政年份:2014
- 资助金额:
$ 52.92万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
9102160 - 财政年份:2014
- 资助金额:
$ 52.92万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of accelerated calcification and structural degeneration of implantable biomaterials in pediatric cardiac surgery
小儿心脏手术中植入生物材料加速钙化和结构退化的机制
- 批准号:
10655959 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别:
A novel therapeutic approach for Alzheimer Disease (AD)
阿尔茨海默病(AD)的新治疗方法
- 批准号:
10740016 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别:
Evaluation of growth potential of ice-free vitrified heart valves in a pediatric porcine model.
评估小儿猪模型中无冰玻璃化心脏瓣膜的生长潜力。
- 批准号:
10696568 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别: