Embryonic vascular stem-progenitors for treatment of ischemic retinopathies
用于治疗缺血性视网膜病的胚胎血管干祖细胞
基本信息
- 批准号:10557078
- 负责人:
- 金额:$ 52.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimal ModelAutologousBackBlindnessBlood VesselsBlood capillariesCXCR4 geneCell LineCell ReprogrammingCell TherapyCellsCessation of lifeDNA MethylationDefectDevelopmentDiabetes MellitusDiabetic RetinopathyDiseaseEmbryoEmbryo TransferEndothelial CellsEngraftmentEpiblastEpigenetic ProcessEyeFibroblastsFunctional RegenerationFutureGene ExpressionGenerationsGenome StabilityHistonesHumanIn VitroIschemiaLegal patentLesionMCAM geneMediatingMemoryMetabolicModelingMolecularMusNatural regenerationNeural RetinaPARP inhibitionPECAM1 genePathologicPathologyPathway interactionsPatientsPericytesPoly(ADP-ribose) Polymerase InhibitorRegenerative MedicineReperfusion InjuryReperfusion TherapyReportingRetinaRetinal DiseasesSecondary toTankyraseTherapeuticTissue DifferentiationTissuesTransplant RecipientsVascular DiseasesVascular Endothelial CellVascularizationVisioncell bankderepressiondiabeticeffectiveness evaluationendothelial stem cellepigenetic memoryepigenomefunctional improvementgenome integrityimprovedin vivoin vivo engraftmentin vivo evaluationinduced pluripotent stem cellmigrationmouse modelneuralneuron apoptosisneurovascular injurynovelpluripotencypre-clinicalprogenitorpromoterregeneration functionregeneration potentialrepairedretina blood vessel structureretinal damageretinal ischemiaself-renewalsmall moleculestemstem cell expansionstem cell self renewalstem cellstherapeutic evaluationtype I diabeticvein occlusion
项目摘要
Branch vein occlusion (BVO) and diabetic retinopathy (DR) are major causes of new onset blindness in
the US. These vascular disorders result in acellular capillaries secondary to ischemic death of retinal
vascular endothelial cells (ECs) and contractile pericytes. If acellular retinal blood vessels could be
regenerated with autologous or cell-banked self-renewing vascular-pericytic stem-progenitors, ischemia
could be relieved, and end stage blindness reversed or stabilized in these vasculopathies. Our group
established the feasibility of transplanting patient-specific embryonic vascular progenitors (VP) with
pericytic potential directly into the eye, following differentiation from human induced pluripotent stem
cells (hiPSC). We also established a novel tankyrase/PARP inhibitor-based small molecule cocktail for
reversion of conventional, lineage-primed hiPSC to ‘naïve’ hiPSCs (N-hiPSCs) that possessed a more
primitive epiblast state with higher functional pluripotency. The regenerative potential of naïve VP (N-VP)
differentiated from normal and diseased N-hiPSC was significantly more prolific relative to primed,
conventional hiPSC. For example, naive diabetic vascular progenitors (N-DVP) differentiated from
patient-specific naïve-reverted diabetic hiPSC (N-DhiPSC) possessed higher vascular functionality,
maintained greater genomic stability, harbored decreased lineage-primed gene expression, and were
more efficient in migrating to and re-vascularizing the deep neural layers of the ischemic retina than
isogenic diabetic vascular progenitors (DVP) from conventional, primed DhiPSC. In this proposal, we
develop the potential of N-VP for treatment of ischemic retinopathies. We will employ a humanized
animal model that mimics retinal ischemia [i.e., ischemia/reperfusion (I/R) injury] for testing the
therapeutic capacity of human N-DVP to form patent blood vessels, rescue ischemic retina, and improve
visual function. We will test the in vivo developmental potential of N-DVP to efficiently differentiate to
ECs and multipotent pericytic stem-progenitors following long-term engraftment in an ischemia-damaged
retinal niche. We will also aim to further improve our approach for generating unlimited amounts of
epigenetically-plastic, pristine, non-diseased naïve embryonic progenitors for cellular therapies by
probing how N-hiPSC reprogramming erases dysfunctional epigenetic donor cell memory and diabetes-
associated metabolic aberrations with greater efficiency than conventional hiPSC reprogramming. These
studies will outline a future pathway for the efficient synchronous generation of naïve vascular and
retinal stem-progenitors from the same N-hiPSC line for a more effective and comprehensive
regeneration of diseased retina. More broadly, we will develop the pre-clinical utility of this novel class of
human vascular-pericytic stem cells that possess high epigenetic plasticity, improved functionality, and
potentially high impact for ocular regenerative medicine.
分支静脉阻塞(BVO)和糖尿病性视网膜病(DR)是新发作失明的主要原因
美国。这些血管疾病导致视网膜缺血性死亡继发的细胞毛细血管
血管内皮细胞(ECS)和收缩周周细胞。如果可以是巨细胞残留的血管
用自体或细胞储备的自我更新血管 - 磨性干核病患者的再生,缺血
我们可以放心,在这些血管疾病中,终结阶段的失明逆转或稳定。我们的小组
建立了使用患者特异性胚胎血管祖细胞(VP)的可行性
与人类诱导的多能茎分化后,直接进入眼睛的细胞电位直接进入眼睛
细胞(HIPSC)。我们还建立了一种新型的罐式酶/PARP抑制剂的小分子鸡尾酒
传统的谱系hipscs恢复为“幼稚” hipscs(n-ipscs),该hipscs拥有更多
具有较高功能多能性的原始层细胞状态。幼稚VP(N-VP)的再生潜力
相对于Primed,与正常和解散的N-Hipsc区分开明显更加多产
常规HIPSC。例如,幼稚的糖尿病血管祖细胞(N-DVP)与
患者特异性的幼稚糖尿病hipsc(N-Dhipsc)具有较高的血管功能,
保持较高的基因组稳定性,含有谱系引发基因表达降低,并且
比迁移和重新血管更有效地使缺血性视网膜的深神经层次更高
来自常规的Priment dhipsc的等源性糖尿病血管祖细胞(DVP)。在这个建议中,我们
开发N-VP治疗缺血性视网膜病的潜力。我们将雇用人生的
模仿视网膜缺血的动物模型[即缺血/再灌注(I/R)损伤]
人类N-DVP的治疗能力形成专利血管,营救缺血性视网膜并改善
视觉功能。我们将测试N-DVP的体内发育潜力,以有效区分
长期植入后,ECS和多能细胞性干螺旋体在缺血损害中
视网膜利基。我们还将旨在进一步改善我们生成无限量的方法
表观遗传塑料,原始的,未固定的幼稚胚胎祖细胞,用于细胞疗法
探测n-hipsc重新编程如何消除功能失调的表观遗传供体细胞记忆和糖尿病 -
与常规HIPSC重编程相比,相关的代谢畸变具有更高的效率。这些
研究将概述有效同步生成幼稚的血管和
来自同一N-HIPSC线的视网膜干螺旋体,以更有效,更全面
解散视网膜的再生。更广泛地说,我们将发展这一新颖的类别的临床前实用性
具有高表观遗传可塑性,改善功能和的人血管生存干细胞
对眼部再生医学的潜在高影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELIAS T. ZAMBIDIS其他文献
ELIAS T. ZAMBIDIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELIAS T. ZAMBIDIS', 18)}}的其他基金
Embryonic vascular stem-progenitors for treatment of ischemic retinopathies
用于治疗缺血性视网膜病的胚胎血管干祖细胞
- 批准号:
10334409 - 财政年份:2021
- 资助金额:
$ 52.92万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
9059743 - 财政年份:2015
- 资助金额:
$ 52.92万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
9220844 - 财政年份:2015
- 资助金额:
$ 52.92万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
8797928 - 财政年份:2015
- 资助金额:
$ 52.92万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
8758998 - 财政年份:2014
- 资助金额:
$ 52.92万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
8892184 - 财政年份:2014
- 资助金额:
$ 52.92万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
9102160 - 财政年份:2014
- 资助金额:
$ 52.92万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of accelerated calcification and structural degeneration of implantable biomaterials in pediatric cardiac surgery
小儿心脏手术中植入生物材料加速钙化和结构退化的机制
- 批准号:
10655959 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别:
A novel therapeutic approach for Alzheimer Disease (AD)
阿尔茨海默病(AD)的新治疗方法
- 批准号:
10740016 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别:
Evaluation of growth potential of ice-free vitrified heart valves in a pediatric porcine model.
评估小儿猪模型中无冰玻璃化心脏瓣膜的生长潜力。
- 批准号:
10696568 - 财政年份:2023
- 资助金额:
$ 52.92万 - 项目类别: