Translation initiation factors driving persistence of Toxoplasma gondii bradyzoites in neurons
驱动弓形虫缓殖子在神经元中持续存在的翻译起始因子
基本信息
- 批准号:10556561
- 负责人:
- 金额:$ 57.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-08 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAnimalsAreaAutomobile DrivingBindingBrainCellsChronicClinicalCollaborationsCollectionComplexCystDataDevelopmentEukaryotic Initiation Factor-2GoalsHumanImmuneImmunosuppressionIndividualInfectionInitiator CodonKnowledgeLaboratoriesLifeMessenger RNAModelingMyocardiumNeurologicNeuronsNucleic Acid Regulatory SequencesOpen Reading FramesOpportunistic InfectionsParasitesPatientsPeptide Initiation FactorsPharmacotherapyPhosphorylationPhosphotransferasesPhysiologicalPopulationProliferatingProtein BiosynthesisProtein Synthesis InductionRNARNA HelicaseRecurrenceRegulatory ElementRibosomesRiskRoleScanningSignal TransductionSkeletal MuscleStressStructureSymptomsSystemTherapeutic InterventionTissuesToxoplasmaToxoplasma gondiiToxoplasmosisTransfer RNATranslatingTranslation InitiationTranslationsWorkcombatenhancer-binding protein AP-2helicaseinnovationinsightmRNA TranslationmRNA cappingnew therapeutic targetnovelnovel therapeuticspreventprogramsrecruitresponseside effectstress managementstress reductiontranscription factortranslatome
项目摘要
PROJECT SUMMARY
The protozoan parasite Toxoplasma gondii can cause recurring opportunistic infections due to its ability to persist
as a latent form (bradyzoite) within patients. There is no treatment that targets bradyzoite cysts, which reconvert
into the destructive proliferative stage (tachyzoites) in the immune compromised. Patients suffering from
reactivated toxoplasmosis frequently present with life-threatening neurological problems, underscoring the
significance of bradyzoite cysts in the brain. A better understanding of the mechanisms that drive the
development of bradyzoites in neurons is necessary to devise new therapies that prevent their formation and
persistence. To address this need, we developed a novel model of spontaneous tissue cyst formation in neurons
using Lund human mesencephalic (LUHMES) cells. We will use this innovative system to determine the
mechanisms underlying the changes in protein synthesis that are required for bradyzoite formation. Based on
our previous collaborative work, we hypothesize that translation initiation factors coordinate changes in
5’-leader sequences of key mRNAs, resulting in changes in protein synthesis that induce conversion to
bradyzoites. Translation begins with the binding of an eIF4F complex to the 5’-cap, which then recruits eIF2,
which carries Met-tRNA. We previously showed TgIF2 is phosphorylated during bradyzoite conversion, which
lowers its abundance and can alter start codon selection. Aim 1 will determine how TgIF2 becomes
phosphorylated and which mRNAs are preferentially translated during spontaneous bradyzoite conversion in
neurons. Our RiboSeq approach will reveal areas within 5’-leaders that regulate translation, such as upstream
open reading frames (uORFs) or secondary structures, the latter of which will be identified by generating the first
RNA “structurome” for Toxoplasma in Aim 2. As these structures are resolved by helicase activity of eIF4F, Aim
2 will also delineate the functions of the multiple TgIF4F complexes we have uncovered in the parasites.
Together, these studies will determine how cellular signals coordinate translation initiation factors to reprogram
the translatome to trigger the spontaneous formation of bradyzoites in human neurons. Completion of this study
will have a sustained high impact on the field by providing significant new insights into the complex mechanisms
that Toxoplasma uses to persists in its host, which will reveal novel points for therapeutic intervention.
项目概要
原生动物寄生虫弓形虫由于其持续存在的能力,可引起反复的机会性感染
作为患者体内的潜伏形式(缓殖子),没有针对缓殖子包囊的治疗方法,缓殖子包囊会重新转变。
免疫受损的患者进入破坏性增殖阶段(速殖子)。
重新激活的弓形体病经常出现危及生命的神经系统问题,这强调了
缓殖子囊肿在大脑中的重要性更好地理解驱动机制。
神经元中缓殖子的发育对于设计新的疗法来阻止其形成和
为了满足这一需求,我们开发了一种神经元自发组织囊肿形成的新模型。
我们将使用隆德人类中脑 (LUHMES) 细胞来确定
缓殖子形成所需的蛋白质合成变化的机制。
我们之前的合作工作中,我们勇敢地认为翻译启动因素协调了
关键 mRNA 的 5’-前导序列,导致蛋白质合成发生变化,从而诱导转化为
翻译从 eIF4F 复合物与 5’-cap 的结合开始,然后招募 eIF2,
我们之前表明TgIF2在缓殖子转化过程中被磷酸化,这导致了TgIF2携带Met-tRNA。
降低其丰度并可以改变起始密码子选择 目标 1 将决定 TgIF2 如何变化。
磷酸化以及哪些 mRNA 在自发缓殖子转化过程中优先翻译
我们的 RiboSeq 方法将揭示 5’-前导区域内调节翻译的区域,例如上游。
开放阅读框(uORF)或二级结构,后者将通过生成第一个结构来识别
Aim 2 中弓形虫的 RNA“结构组”。由于这些结构是通过 eIF4F 的解旋酶活性解析的,Aim
图 2 还将描述我们在寄生虫中发现的多个 TgIF4F 复合物的功能。
这些研究将共同确定细胞信号如何协调翻译起始因子以进行重编程
翻译组触发人类神经元中缓殖子的自发形成 完成这项研究。
通过提供对复杂机制的重要新见解,将对该领域产生持续的重大影响
弓形虫用来在宿主体内持续存在的物质,这将揭示治疗干预的新点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William J Sullivan其他文献
William J Sullivan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William J Sullivan', 18)}}的其他基金
m6A mRNA reader proteins in the AIDS-opportunistic pathogen Toxoplasma gondii
艾滋病机会致病菌弓形虫中的 m6A mRNA 阅读器蛋白
- 批准号:
10615374 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
Regulation of cyst formation in the AIDS opportunistic pathogen Toxoplasma
艾滋病机会病原体弓形虫包囊形成的调节
- 批准号:
10515665 - 财政年份:2021
- 资助金额:
$ 57.38万 - 项目类别:
Regulation of cyst formation in the AIDS opportunistic pathogen Toxoplasma
艾滋病机会病原体弓形虫包囊形成的调节
- 批准号:
10401525 - 财政年份:2021
- 资助金额:
$ 57.38万 - 项目类别:
Epitranscriptomics in the AIDS-opportunistic pathogen Toxoplasma gondii
艾滋病机会致病菌弓形虫的表观转录组学
- 批准号:
9763130 - 财政年份:2019
- 资助金额:
$ 57.38万 - 项目类别:
Epitranscriptomics in the AIDS-opportunistic pathogen Toxoplasma gondii
艾滋病机会致病菌弓形虫的表观转录组学
- 批准号:
9889878 - 财政年份:2019
- 资助金额:
$ 57.38万 - 项目类别:
Translational control during stage conversion of Toxoplasma, an opportunistic infection of HIV/AIDS
弓形虫(HIV/AIDS 的一种机会性感染)阶段转换过程中的转化控制
- 批准号:
9226018 - 财政年份:2016
- 资助金额:
$ 57.38万 - 项目类别:
Translational Control of Encystation in the Entamoebae
内阿米巴包囊的翻译控制
- 批准号:
8913307 - 财政年份:2015
- 资助金额:
$ 57.38万 - 项目类别:
Inhibition of phosphatase activity as a novel treatment for chronic toxoplasmosis
抑制磷酸酶活性作为慢性弓形体病的新治疗方法
- 批准号:
8719806 - 财政年份:2013
- 资助金额:
$ 57.38万 - 项目类别:
Inhibition of phosphatase activity as a novel treatment for chronic toxoplasmosis
抑制磷酸酶活性作为慢性弓形体病的新治疗方法
- 批准号:
8504211 - 财政年份:2013
- 资助金额:
$ 57.38万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
- 批准号:
10495114 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
Investigational WNT-pathway modulators for the treatment and prevention of drug-resistant seizures
用于治疗和预防耐药性癫痫发作的研究性 WNT 通路调节剂
- 批准号:
10725450 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别: