ATase1 and ATase2, proteostasis, and neurological diseases
ATase1 和 ATase2、蛋白质稳态和神经系统疾病
基本信息
- 批准号:10554962
- 负责人:
- 金额:$ 30.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAcetyltransferaseAnimalsAutophagocytosisBiochemicalBiological ProcessBiologyBrainCellular biologyCessation of lifeCollaborationsCommunicationDeacetylaseDefectDevelopmental Delay DisordersEndoplasmic ReticulumEnsureEquilibriumEventFunctional disorderGene DuplicationGeneticGlutamate-ammonia-ligase adenylyltransferaseGlycoproteinsGoalsGolgi ApparatusHeterozygoteHumanIntellectual functioning disabilityLaboratoriesLysineMaintenanceMass Spectrum AnalysisMediatingMembrane Transport ProteinsMetabolicModelingMolecularMolecular BiologyMusMutationNeuronsNeuropathyOrganellesOutputPathway interactionsPeripheralPhenotypeProgeriaProteinsQuality ControlResearchSeriesTechniquesTestingTherapeuticautism spectrum disorderdesigndisease phenotypeexperimental studyhuman diseasein vivoloss of functionmouse modelnervous system disordernovelpharmacologicprematureprotein aggregationproteostasisresponsetraffickingtranslational approach
项目摘要
We discovered that Nε-lysine acetylation occurs in the lumen of the endoplasmic reticulum (ER) in 2007. From that initial finding, we went on to discover the entire ER acetylation machinery (one membrane transporter, AT-1/SLC33A1, and two acetyltranferases, ATase1 and ATase2) and uncover a novel piece of ER biology. Specifically, we discovered that the ER acetylation machinery regulates proteostasis within the secretory pathway as well as metabolic crosstalk between different intracellular organelles and compartments. Human-based studies discovered that dysfunctional ER acetylation, as caused by loss-of-function homozygous and heterozygous mutations or gene duplication events, is associated with different human diseases, from developmental delay of the brain and premature death to peripheral forms of neuropathy, autism spectrum disorder, intellectual disability and segmental progeria. Mouse models that mimic these genetic events recapitulate associated human diseases. Importantly, ATase-targeting compounds that restore the proteostatic functions of the ER rescue the disease phenotypes of the animals.
In conclusion, we have identified a novel molecular machinery that is key to the maintenance of proteostasis within the secretory pathway, and that can be targeted to (i) understand the pathophysiology of several related neurological diseases and (ii) develop appropriate translational approaches to resolve proteostatic defects. The GENERAL HYPOTHESIS of this research is that ATase1 and ATase2 act downstream of an intracellular communication network that regulates the proteostatic functions of the ER and secretory pathway. Our main goal is to dissect the molecular mechanism(s) underlying the acetyl-CoA:lysine acetyltransferase activity of the ATases and understand how ER-based acetylation regulates the efficiency of the secretory pathway.
Aim 1 will test the hypothesis that the ATases have divergent functions and differentially regulate proteostasis and metabolic crosstalk. Aim 2 will test the hypothesis that unique structural features allow the ATases to respond to acetyl-CoA influx, Ca++ levels, and perturbations in ER proteostasis. Aim 3 will test the hypothesis that the acetyl group added in the ER lumen by the ATases must be removed in the lumen of the Golgi apparatus by Amfion/GDAC to ensure correct trafficking of nascent glycoproteins and the quality of the secretome.
In conclusion, this proposal is based on novel findings from our laboratory and offers a series of highly mechanistic studies that have the potential to define new avenues of research (and treatment) for different neurological diseases. The proposal will use unique mouse models as well as highly integrated novel experimental approaches. We believe that upon completion of these studies, we will have defined an entirely new avenue of research for different neurological diseases.
我们发现Nε-赖氨酸乙酰化发生在2007年的内质网(ER)的腔内。从最初的发现,我们继续发现了整个ER乙酰化机械(一个膜转运蛋白,AT-1/SLC33A1,AT-1/SLC33A1,以及两个乙酰磷酸酶,Atase1和atase1和Atase2和Atase2)和一件小说。具体而言,我们发现ER乙酰化机械调节秘书途径内的蛋白质量,以及不同细胞内细胞器和隔室之间的代谢串扰。基于人类的研究发现,功能失调的ER乙酰化是由纯合和杂合突变丧失引起的,或基因重复事件与不同的人类疾病有关,来自不同的人类疾病,从发展大脑的延迟到过早死亡到神经病,自闭症谱,智力疾病,知识疾病,知识疾病,智力疾病,智力疾病,智力疾病和片段的外周形式。模仿这些遗传事件的小鼠模型概括了相关的人类疾病。重要的是,恢复ER的蛋白抑制功能的靶向化合物营救了动物的疾病表型。
总之,我们已经确定了一种新型的分子机械,该机械是维持秘密途径中蛋白质量的关键,并且可以针对(i)了解几种相关神经系统疾病的病理生理学,并且(ii)开发了适当的翻译方法来解决蛋白质静态缺陷。这项研究的一般假设是,ATASE1和ATASE2在细胞内通信网络的下游调节ER和秘密途径的蛋白抑制功能。我们的主要目的是剖析乙酰辅酶A的分子机制:ATases的赖氨酸乙酰转移酶活性,并了解基于ER的乙酰基如何调节秘密途径的效率。
AIM 1将检验ATases具有不同功能的假设,并且对蛋白质量和代谢串扰的调节。 AIM 2将检验以下假设:独特的结构特征使Atases可以对ER蛋白质的乙酰-COA影响,Ca ++水平和扰动做出反应。 AIM 3将检验以下假设:必须通过AMFION/GDAC在高尔基体腔中除去Atases中添加的乙酰基群,以确保对新生糖蛋白的正确运输和秘密的质量进行正确的运输。
总之,该提案基于我们实验室的新发现,并提供了一系列高度机理的研究,这些研究有可能定义不同神经疾病的研究(和治疗)的新途径。该提案将使用独特的小鼠模型以及高度集成的新型实验方法。我们认为,完成这些研究后,我们将定义针对不同神经疾病的全新研究途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luigi Puglielli其他文献
Luigi Puglielli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luigi Puglielli', 18)}}的其他基金
Novel mechanisms for Alzheimer disease prevention and or treatment
预防和/或治疗阿尔茨海默病的新机制
- 批准号:
10155429 - 财政年份:2019
- 资助金额:
$ 30.03万 - 项目类别:
Novel mechanisms for Alzheimer disease prevention and or treatment
预防和/或治疗阿尔茨海默病的新机制
- 批准号:
9906046 - 财政年份:2019
- 资助金额:
$ 30.03万 - 项目类别:
Novel mechanisms for Alzheimer disease prevention and or treatment
预防和/或治疗阿尔茨海默病的新机制
- 批准号:
10455418 - 财政年份:2019
- 资助金额:
$ 30.03万 - 项目类别:
Proteostasis in the aging and Alzheimer's disease brain: are the ATases novel targets?
衰老和阿尔茨海默病大脑中的蛋白质稳态:ATase 是新靶点吗?
- 批准号:
9189078 - 财政年份:2016
- 资助金额:
$ 30.03万 - 项目类别:
Spastic paraplegia, neurodegeneration and autism: possible role for AT-1/SLC33A1?
痉挛性截瘫、神经退行性变和自闭症:AT-1/SLC33A1 的可能作用?
- 批准号:
9271256 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Spastic paraplegia, neurodegeneration and autism: possible role for AT- 1/SLC33A1?
痉挛性截瘫、神经退行性变和自闭症:AT-1/SLC33A1 的可能作用?
- 批准号:
10116004 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Spastic paraplegia, neurodegeneration and autism: possible role for AT- 1/SLC33A1?
痉挛性截瘫、神经退行性变和自闭症:AT-1/SLC33A1 的可能作用?
- 批准号:
10518395 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Spastic paraplegia, neurodegeneration and autism: possible role for AT-1/SLC33A1?
痉挛性截瘫、神经退行性变和自闭症:AT-1/SLC33A1 的可能作用?
- 批准号:
9144474 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Spastic paraplegia, neurodegeneration and autism: possible role for AT- 1/SLC33A1?
痉挛性截瘫、神经退行性变和自闭症:AT-1/SLC33A1 的可能作用?
- 批准号:
10306409 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Novel mechanisms for Alzheimer's disease prevention and/or treatment
预防和/或治疗阿尔茨海默病的新机制
- 批准号:
8536999 - 财政年份:2013
- 资助金额:
$ 30.03万 - 项目类别:
相似国自然基金
SCML4协同乙酰化转移酶HBO1促进Trm表观遗传修饰增强抗肿瘤免疫的分子机制研究
- 批准号:82303153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核苷酸转移酶cGAS乙酰化修饰抑制剂的设计、合成及抗自身免疫性疾病的机制研究
- 批准号:82273767
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
组蛋白乙酰化转移酶KAT7在血管衰老中的作用及表观遗传机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ac4C乙酰化转移酶NAT10通过促进HMGB1转录介导CD8+T细胞节律紊乱与功能抑制的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ac4C乙酰化转移酶NAT10通过促进HMGB1转录介导CD8+T细胞节律紊乱与功能抑制的机制研究
- 批准号:82203478
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Pathogenesis, prevention and treatment of corticosteroid-resistant gut GVHD
皮质类固醇耐药性肠道GVHD的发病机制及防治
- 批准号:
10585851 - 财政年份:2023
- 资助金额:
$ 30.03万 - 项目类别:
Enhancing neuronal resilience to aging and degeneration via the epigenetic-metabolic axis
通过表观遗传代谢轴增强神经元对衰老和退化的抵抗力
- 批准号:
10679706 - 财政年份:2023
- 资助金额:
$ 30.03万 - 项目类别:
Dynamics and molecular mechanisms linking metabolism and the epigenome
连接代谢和表观基因组的动力学和分子机制
- 批准号:
10624003 - 财政年份:2023
- 资助金额:
$ 30.03万 - 项目类别:
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10877377 - 财政年份:2023
- 资助金额:
$ 30.03万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 30.03万 - 项目类别: