Describing the Epigenetic Mechanisms in Control of Hematopoietic Development and Rapid Inflammatory Responses
描述控制造血发育和快速炎症反应的表观遗传机制
基本信息
- 批准号:10553683
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-31 至 2024-01-30
- 项目状态:已结题
- 来源:
- 关键词:ArginineBacterial InfectionsBase PairingBiological ModelsBiological ProcessBiologyBloodBlood CellsBone MarrowCell Differentiation processCell LineCell LineageCell physiologyCellsChromatinCollaborationsComplexDNA biosynthesisDataDedicationsDefectDevelopmentDiGeorge SyndromeDiseaseEnhancersEpigenetic ProcessExperimental GeneticsFaceFoundationsFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic ModelsGenetic TranscriptionGenomeGoalsHealthHematopoiesisHematopoieticHematopoietic stem cellsHeterochromatinHigh-Throughput Nucleotide SequencingHistone H3Histone H3.3HistonesHumanImmuneImmune responseImmunityIndividualInfectionInflammatory ResponseKnock-outKnowledgeLentivirusLinkListeriaLysineMacrophageMalignant NeoplasmsMapsModelingModificationMusMutationMyeloid CellsOrganismPathway interactionsPatientsPhenotypePhosphorylationPost-Translational Protein ProcessingProcessProteinsReaderRegulationRegulatory PathwayRepressionResearchRoleSerineSignal TransductionSortingSpeedSpleenSystemT-LymphocyteTailTestingTissuesTrainingVariantVertebratesYeastsadult stem cellcell typeepigenetic regulationexhaustionexperimental studyextracellularflyhistone modificationin vivoinducible Creinsightinterestmammalian genomemodel organismmouse modelmutantnovelpathogenprogenitorpromoterresponsescreeningstem cell survivaltherapeutic target
项目摘要
Project Summary
Complex organisms face daunting “epigenetic challenges”. How is a single genome interpreted to instruct over
one thousand distinct cell fates? How do extracellular signals rapidly and robustly turn on select genes in the
three billion base-pair genome? Epigenetic mechanisms underlie balanced blood cell differentiation and the
speed and scope of cellular responses to pathogens or tissue damage—features that define immunity, tolerance,
and survival during infection. Critical to understanding the mechanisms that “solve” these epigenetic challenges
is the study of histones, proteins that package and regulate the genome. The focus of this project is to reveal the
function of histones and histone post-translational modifications (PTMs) in mammalian organisms. Of particular
interest is Histone variant H3.3, which represents 2 of 15 copies of H3 in the genome but is enriched in
dynamically regulated chromatin such as enhancers, promotors and gene bodies. Additionally, H3.3 is the only
H3 that is expressed in a DNA synthesis independent fashion. For these reasons we have focused on studying
the function of H3.3 residues and modifications in hematopoietic development and immune cell function as these
systems reflect complex mammalian development and rapid cellular responses, and are highly relevant to health
and disease.
Preliminary experiments focused on the function of co-transcriptional modification H3.3S31ph, and loss
of this mark abrogates the ability of a macrophage cell line (RAW264.7s) to respond to LPS. To examine which
other H3.3 residues and modifications are required for this rapid transcriptional response, I have developed a
novel knockout and replacement system in BMDMs (Aim 1). Early results have shown that mutation of certain
lysine residues to arginine (H3.3K4R, H3.3K36R) leads to decreased stimulation-induced transcription, whereas
others (H3.3K9R, H3.3K27R) have no effect. To validate the functional relevance of these results, we have
shown the requirement of H3.3 for in vivo immune response to listeria. Our results will inform ongoing studies to
define dedicated mechanisms for rapid transcription.
Additionally, we will use this model of knockout and replacement to determine the function of H3.3 and
key residues in hematopoietic development (Aim 2). Initial experiments shown the requirement for H3.3 in
hematopoietic stem cell survival, and macrophage differentiation. Targeted and unbiased screening of histone
“readers, writers, and erasers” will enable us to link H3.3 mutant phenotypes to chromatin regulatory pathways
and factors. Together these studies will elucidate how epigenetic mechanisms can regulate cellular differentiation
and the speed and scope of cellular responses. By advancing basic knowledge of the epigenetic mechanisms
regulating these cellular processes, the proposed research will have broad implications for basic biology and
disease, as well as direct implications in bacterial infection and patients with H3.3 pathway mutations.
项目概要
复杂的生物体面临着令人畏惧的“表观遗传挑战”。
一千个不同的细胞命运如何快速而有力地开启细胞中的选定基因?
三十亿个碱基对基因组?表观遗传机制是平衡血细胞分化和
细胞对病原体或组织损伤反应的速度和范围——定义免疫、耐受性、
和感染期间的生存对于理解“解决”这些表观遗传挑战的机制至关重要。
是对组蛋白、包装和调节基因组的蛋白质的研究,该项目的重点是揭示
组蛋白和组蛋白翻译后修饰 (PTM) 在哺乳动物中的功能。
人们感兴趣的是组蛋白变体 H3.3,它代表基因组中 15 个 H3 拷贝中的 2 个,但富含
动态调节的染色质,例如增强子、启动子和基因体 此外,H3.3 是唯一的。
H3 以独立于 DNA 合成的方式表达。出于这些原因,我们重点研究。
H3.3残基的功能以及造血发育和免疫细胞功能中的修饰
系统反映了复杂的哺乳动物发育和快速的细胞反应,并且与健康高度相关
和疾病。
初步实验重点关注共转录修饰H3.3S31ph的功能,以及丢失
该标记消除了巨噬细胞系 (RAW264.7s) 对 LPS 的反应能力。
这种快速转录反应需要其他 H3.3 残基和修饰,我开发了一种
BMDM 中的新型敲除和替换系统(目标 1)。早期结果表明某些突变。
赖氨酸残基变为精氨酸(H3.3K4R、H3.3K36R)会导致刺激诱导的转录减少,而
其他(H3.3K9R、H3.3K27R)没有影响。为了验证这些结果的功能相关性,我们有。
显示了 H3.3 对李斯特菌的体内免疫反应的要求,我们的结果将为正在进行的研究提供信息。
定义快速转录的专用机制。
此外,我们将使用这种敲除和替换模型来确定 H3.3 和
造血发育中的关键残基(目标 2)。初步实验表明,H3.3 是必需的。
造血干细胞存活和巨噬细胞分化的组蛋白的靶向和公正筛选。
“读者、作者和橡皮擦”将使我们能够将 H3.3 突变表型与染色质调控途径联系起来
这些研究将共同阐明表观遗传机制如何调节细胞分化。
以及细胞反应的速度和范围。
调节这些细胞过程,拟议的研究将对基础生物学和
疾病,以及对细菌感染和 H3.3 通路突变患者的直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Daman其他文献
Andrew Daman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Daman', 18)}}的其他基金
Describing the Epigenetic Mechanisms in Control of Hematopoietic Development and Rapid Inflammatory Responses
描述控制造血发育和快速炎症反应的表观遗传机制
- 批准号:
10490961 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
相似国自然基金
肠道类器官模型探讨T6SS在细菌感染过程中对宿主MAPK信号通路的调控作用及机制研究
- 批准号:32300597
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于有机染料的耐低氧光敏剂用于光动力治疗细菌感染
- 批准号:22378231
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“持续化学发光与多效抗菌”复合探针的构筑及其关节假体周围感染细菌的检测与灭活研究
- 批准号:82302646
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智能响应细菌生物膜微环境的GQDs/Mn:ZnSe纳米复合水凝胶构筑及用于感染诊疗一体化研究
- 批准号:22305098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
免扩增核酸定量检测技术研究及其在发热儿童细菌与病毒性感染快速鉴别中的应用
- 批准号:22304040
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small RNA based control of zinc homeostasis in Streptococcus pneumoniae
基于小RNA的肺炎链球菌锌稳态控制
- 批准号:
10625448 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System via the hilD 3' untranslated region
通过 hilD 3 非翻译区调节沙门氏菌致病性岛 1 III 型分泌系统
- 批准号:
10625450 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Small RNA based control of zinc homeostasis in Streptococcus pneumoniae
基于小RNA的肺炎链球菌锌稳态控制
- 批准号:
10510978 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System via the hilD 3' untranslated region
通过 hilD 3 非翻译区调节沙门氏菌致病性岛 1 III 型分泌系统
- 批准号:
10527931 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Describing the Epigenetic Mechanisms in Control of Hematopoietic Development and Rapid Inflammatory Responses
描述控制造血发育和快速炎症反应的表观遗传机制
- 批准号:
10490961 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别: