Metabolic Reprogramming for Photoreceptor Neuroprotection
光感受器神经保护的代谢重编程
基本信息
- 批准号:10555429
- 负责人:
- 金额:$ 1.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAerobicAmino AcidsAnabolismApoptosisApoptosis Regulation GeneApoptoticAutophagocytosisBioenergeticsBlindnessBudgetsCell DeathCell SurvivalCessation of lifeDiseaseEnergy MetabolismEnzymesEquilibriumFoundationsFutureGatekeepingGenerationsGeneticGlycolysisGoalsHK2 geneHexokinase 2HomeostasisInheritedInterventionKnockout MiceKnowledgeLinkLipidsMacular degenerationMeasuresMediatingMediator of activation proteinMetabolicMetabolic dysfunctionMetabolismMitochondriaModalityModelingMolecularMusMuscleNeuroprotective AgentsNucleotidesNutrientPharmacologyPhotoreceptorsProtein IsoformsProto-Oncogene Proteins c-aktPublic HealthPyruvate KinaseRecombinant adeno-associated virus (rAAV)RegulationResearchRetinaRetinal ConeRetinal DetachmentRodRoleSignal TransductionStressTestingaerobic glycolysisbasedetection of nutrientimprovedinhibitorinnovationneuroprotectionneurotrophic factornovelnovel strategiesnutrient deprivationoverexpressionpreventresponseretinal apoptosisretinal rodssight restorationtreatment strategy
项目摘要
PROJECT SUMMARY
A key gap remains in our ability to develop successful treatment strategies to prevent photoreceptor (PR)
loss and restore vision. To address this gap, we are proposing novel strategies to reprogram metabolism and
boost PR survival. PRs have unique metabolic adaptations and utilize aerobic glycolysis to budget their metabolic
needs based on nutrient availability, balancing the synthesis of amino acid, nucleotide and lipid precursors with
energy generation. PRs perform aerobic glycolysis by expressing hexokinase 2 (HK2) and pyruvate kinase
muscle 2 (PKM2). HK2, the first enzyme of glycolysis, acts as an intracellular rheostat, a unique non-enzymatic
function that links metabolic status to survival by regulating apoptosis and autophagy. PKM2 is the gatekeeper
of energy metabolism and controls aerobic glycolytic flux. HK2 expression is critical for the survival of PRs, as
replacing HK2 with HK1 isoform increases apoptosis after stress. Furthermore, replacing low-activity PKM2 with
its high-activity isoform PKM1 increases total PKM activity in PRs and boosts survival after nutrient deprivation.
The over-arching hypothesis of this proposal is that metabolic reprogramming of PRs, by modulating HKs and
PKMs, will enhance survival of stressed PRs, enzymatically by increasing energy generation via glycolysis, and
non-enzymatically by inhibiting death signals during energy crisis. The objectives in this project are to: 1)
utilize genetic and pharmacologic manipulation of PKM and HK function and prevent retinal detachment induced
PR death by metabolic reprograming; and 2) identify non-enzymatic functions of HKs that regulate PR survival
during experimental retinal detachment.
Aim 1: To test the hypothesis that augmenting energy homeostasis by altering PKM function will
enhance PR survival during stress. Our hypothesis predicts that increasing total PKM activity provides
survival advantage during apoptotic stress by shifting PR metabolism to more efficiently generate ATP from
limited energy substrates. These studies will measure glycolytic flux, ATP generation, and cell death in an acute
PR stress model upon Pkm1 overexpression or pharmacologic activation of PKM2.
Aim 2: To test the hypothesis that HK2 is the molecular rheostat that links metabolic status to PR
apoptosis and autophagy. Our hypothesis predicts that HK2 links PR metabolic needs to survival and that HK2
to HK1 reprograming will decouple metabolic regulation of apoptosis and autophagy. These studies will identify
the links between HK2 and key regulators of apoptosis and autophagy in PRs and will measure the effect of HK2
to HK1 reprogramming on glycolysis, biosynthesis, and PR cell death.
Our approach is innovative as we will connect the unique energy metabolism of PRs directly to cell death
regulation via manipulating the key mediators of aerobic glycolysis, i.e. PKM2 and HK2. The proposed research
is significant in that it will provide critical information on how unique metabolic adaptations of PRs influence cell
survival and lay the foundation for future studies exploring the connections between metabolism and PR survival.
项目摘要
我们制定成功治疗策略以防止感光器(PR)的关键差距仍然存在
损失和恢复视力。为了解决这一差距,我们正在提出新颖的策略来重编代谢和
增强PR生存。 PRS具有独特的代谢适应性,并利用有氧糖酵解来预算其代谢
基于养分可用性的需求,平衡氨基酸,核苷酸和脂质前体的合成
能源产生。 PRS通过表达己糖酶2(HK2)和丙酮酸激酶进行有氧糖酵解
肌肉2(PKM2)。 hk2是糖酵解的第一种酶,充当细胞内的恒星,一种独特的非酶
通过调节细胞凋亡和自噬将代谢状态与生存联系起来的功能。 PKM2是看门人
能量代谢并控制有氧糖酵解通量。 HK2表达对于PR的生存至关重要,如
用HK1同工型代替HK2会增加压力后的凋亡。此外,用
它的高活动性同工型PKM1增加了PRS中的总PKM活性,并在营养剥夺后提高了存活率。
该提案的总体假设是通过调节HK和
PKMS,将通过糖酵解来增加酶促的酶促生存,并通过糖酵解来增加酶促的生存。
通过抑制能源危机期间的死亡信号而非酶。该项目的目标是:1)
利用PKM和HK功能的遗传和药理学操纵,并防止视网膜脱离引起
通过代谢重编程死亡的PR死亡; 2)确定调节PR存活的HK的非酶函数
在实验性视网膜脱离过程中。
目的1:检验以下假设,即通过改变PKM功能来增强能量稳态会
在压力期间增强PR存活。我们的假设预测,增加的总PKM活性提供了
通过将PR代谢转移到更有效地从中产生ATP,在凋亡应激期间的生存优势
能量底物有限。这些研究将在急性中测量糖酵解通量,ATP产生和细胞死亡
PKM1过表达或PKM2药物激活后的PR应力模型。
目的2:检验HK2是将代谢状态连接到PR的分子变势的假设
凋亡和自噬。我们的假设预测HK2将PR代谢需要生存需要,并且HK2
HK1重编程将使凋亡和自噬的代谢调节分解。这些研究将确定
HK2与PRS中凋亡和自噬的关键调节剂之间的联系,将测量HK2的效果
HK1在糖酵解,生物合成和PR细胞死亡上进行重编程。
我们的方法具有创新性,因为我们将把PR的独特能量代谢与细胞死亡联系起来
通过操纵有氧糖酵解的关键介质(即PKM2和HK2)进行调节。拟议的研究
重要的是,它将提供有关PRS独特的代谢适应如何影响细胞的关键信息
生存并为未来的研究奠定了基础,探讨了新陈代谢与PR生存之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cagri Besirli其他文献
Cagri Besirli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cagri Besirli', 18)}}的其他基金
Metabolic Reprogramming for Photoreceptor Neuroprotection
光感受器神经保护的代谢重编程
- 批准号:
9816328 - 财政年份:2019
- 资助金额:
$ 1.95万 - 项目类别:
Metabolic Reprogramming for Photoreceptor Neuroprotection
光感受器神经保护的代谢重编程
- 批准号:
10654063 - 财政年份:2019
- 资助金额:
$ 1.95万 - 项目类别:
Metabolic Reprogramming for Photoreceptor Neuroprotection
光感受器神经保护的代谢重编程
- 批准号:
10442580 - 财政年份:2019
- 资助金额:
$ 1.95万 - 项目类别:
Metabolic Reprogramming for Photoreceptor Neuroprotection
光感受器神经保护的代谢重编程
- 批准号:
10200068 - 财政年份:2019
- 资助金额:
$ 1.95万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Nitrite Supplementation to Mitigate Fatigability and Increase Function in Long COVID Patients
补充亚硝酸盐可减轻长期新冠患者的疲劳并增强功能
- 批准号:
10590380 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Exercise facilitation of adolescent fear extinction, frontolimbic circuitry, and endocannabinoids
运动促进青少年恐惧消退、额边缘回路和内源性大麻素
- 批准号:
10648773 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
High Intensity Interval Training: Optimizing Exercise Therapy to Mitigate Cardiovascular Disease Risk Following Breast Cancer Chemotherapy
高强度间歇训练:优化运动疗法以降低乳腺癌化疗后的心血管疾病风险
- 批准号:
10667675 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别: