PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
基本信息
- 批准号:10550247
- 负责人:
- 金额:$ 18.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAgeAlaska NativeAmerican IndiansAsian populationAttentionBlack PopulationsBoard CertificationCalibrationCharacteristicsClinicalClinical DataClinical InformaticsCollectionCommunicationDataData AnalyticsData ScienceData SetData SourcesDevelopmentDevelopment PlansDiagnosisDiscriminationDiseaseElectronic Health RecordEnsureEnvironmentEpidemiologistEpidemiologyEquityEthnic OriginEthnic PopulationExcisionFaceFundingGastroenterologistGeneral PopulationGoalsGrantHealth Disparities ResearchHealth Services ResearchHealthcareHelicobacter pyloriHispanic PopulationsImmigrantIndividualInequityInformaticsInformation RetrievalInpatientsInstitutionLaboratoriesLassoLeadershipMachine LearningMalignant NeoplasmsMalignant neoplasm of gastrointestinal tractMaster of ScienceMeasuresMedicareMentorsMentorshipMethodologyModelingMorbidity - disease rateNational Cancer InstituteNatural Language ProcessingNatureNeighborhoodsNot Hispanic or LatinoObservational StudyOutcomeOutpatientsPerformancePharmacy facilityPhenotypePovertyPrecision HealthPreventionProbabilityPrognosisRaceReportingResearchResearch DesignResearch PersonnelRiskRisk FactorsScreening for Gastric CancerSmokingSubgroupSystemTechniquesTestingTimeTrainingUnemploymentUnited StatesUniversitiesValidationWorkadvanced analyticsattenuationcancer diagnosiscancer health disparitycancer riskcareer developmentclinically actionablecohortdata miningdata streamsdeep learningdisparity eliminationdisparity reductionexperiencegastric cancer preventionhealth care disparityhealth equityhigh riskhigh risk populationimprovedimproved outcomelearning algorithmlearning strategymachine learning algorithmmachine learning modelmalignant stomach neoplasmmortalitymulti-ethnicneural networknoveloutcome predictionpersonalized predictionspersonalized risk predictionprogramsracial diversityrandom forestrisk predictionrisk prediction modelsexskillssuccesssupervised learningsupport vector machinetoolunstructured datayears of life lost
项目摘要
The National Cancer Institute has called for eliminating disparities in cancer morbidity
and mortality through the use of Data Science. Gastric cancer remains one of the most unequally distributed
cancers in the United States, with high burden among certain ethnic, racial, and immigrant groups. Identification
of individuals at greatest risk for gastric cancer may allow for targeted risk attenuation programs, and improve
health equity. Candidate and Career Development Plan: I am a board-certified Gastroenterologist and Master’s
degree-trained epidemiologist at Stanford University who seeks to use data science to reduce disparities in
cancer outcomes. Based on my training and experience, I have content expertise in gastrointestinal cancer
diagnosis, and methodologic expertise in epidemiologic principles and observational study design. In order to
achieve my long-term goal of becoming an independent investigator and national leader in cancer disparities
research, I require additional quantitative skills (large data analytics, machine learning-based risk prediction,
unstructured data extraction using natural language processing), qualitative skills (effective scientific
communication, scientific leadership), and professional development. Research Plan: The overarching research
aim of this proposal is to develop a PErsonalized Risk Score for gastrIc CancEr (PRECISE) using real-world
clinical data sources. My overall hypothesis is that through use of advanced data analytics and deep learning
methods, a highly-refined cohort of individuals at highest risk for gastric cancer can be identified. The Specific
Aims of this proposal seek to address this hypothesis: (1) to build a personalized risk prediction model using
regression, (2) to build a personalized risk prediction model using machine learning algorithms, and (3) to
compare regression and machine learning models in electronic health records data. Achievement of these aims
will produce a novel, personalized prediction score which will help identify individuals at high risk for gastric
cancer and who may benefit from targeted risk attenuation programs. Mentorship Team: To achieve these
Aims, I have assembled a world class mentorship team with expertise in epidemiology and health disparities
research (Latha Palaniappan, primary mentor), machine learning and natural language processing in EHR data
(Tina Hernandez-Boussard, co-mentor), and gastric cancer screening and prevention (Joo Ha Hwang, co-mentor).
Environment and Institutional Commitment: Stanford University is a world leader in clinical
informatics, epidemiology, and health services research. I will have access to a unique data core, which contains
one of the most extensive and robust collections of curated clinical data in the world. My mentorship team is
committed to ensuring the success of the proposal, and in developing me to become an independent investigator
competitive for R-level grants.
国家癌症研究所呼吁消除癌症发病率的差异
通过使用数据科学的死亡率。胃癌仍然是最不合时宜的
在美国,某些种族,种族和移民群体中的癌症燃烧很高。鉴别
胃癌风险最大的个体可能允许有针对性的风险衰减计划,并改善
健康平等。候选人和职业发展计划:我是董事会认证的胃肠病学家和硕士
斯坦福大学学位培训的流行病学家,他试图使用数据科学来减少分布
癌症的结果。根据我的培训和经验,我拥有胃肠癌的内容专业知识
流行病学原理和观察性研究设计方面的诊断和方法学专业知识。为了
实现我成为癌症分布的独立研究者和国家领导者的长期目标
研究,我需要其他定量技能(大数据分析,基于机器学习的风险预测,
使用自然语言处理的非结构化数据提取),定性技能(有效的科学
沟通,科学领导)和专业发展。研究计划:总体研究
该提案的目的是使用现实世界为Gastic Cancer(精确)开发个性化的风险评分
临床数据来源。我的总体假设是,通过使用高级数据分析和深度学习
可以鉴定出一种胃癌风险最高的个体的方法,可以确定。具体
该提案的目的旨在解决这一假设:(1)使用
回归,(2)使用机器学习算法构建个性化的风险预测模型,(3)
比较电子健康记录数据中的回归和机器学习模型。实现这些目标
将产生一个新颖的个性化预测评分
癌症以及可能受益于有针对性的风险衰减计划。指导团队:实现这些
AIMS,我组建了一个世界一流的精通团队,该团队具有流行病学和健康分布方面的专业知识
研究(Latha Palanippan,主要导师),EHR数据中的机器学习和自然语言处理
(蒂娜·埃尔南德斯·布萨德(Tina Hernandez-Boussard),联合学者)和胃癌筛查和预防(Joo Ha Hwang,Co-Inseror)。
环境和机构承诺:斯坦福大学是临床领域的世界领导者
信息,流行病学和卫生服务研究。我将可以访问一个独特的数据核心,其中包含
世界上最广泛,最强大的临床数据收集之一。我的攻击团队是
致力于确保提案的成功,并在发展我成为独立调查员时
R级赠款的竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Jeffrey Huang其他文献
Robert Jeffrey Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Jeffrey Huang', 18)}}的其他基金
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10359182 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10214927 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Latent profiles of prenatal exposure to toxic metals and psychosocial risk and protective factors: testing associations with child developmental outcomes and moderations by caregiving experience
产前接触有毒金属和心理社会风险和保护因素的潜在特征:测试与儿童发育结果的关联以及护理经验的调节
- 批准号:
10606183 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
The relationship between child language proficiency and language of treatment on the outcomes of bilingual children with developmental language disorder
儿童语言能力与语言治疗对发育性语言障碍双语儿童结局的关系
- 批准号:
10599025 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别: