Drosophila as a model to study modifiers of Cystic Fibrosis
果蝇作为研究囊性纤维化修饰因子的模型
基本信息
- 批准号:10550126
- 负责人:
- 金额:$ 7.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-03 至 2025-03-02
- 项目状态:未结题
- 来源:
- 关键词:AffectBacteriaBiological AssayCandidate Disease GeneCell LineCellsChloride ChannelsChloridesClinicalColonCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDehydrationDiseaseDisease ProgressionDrosophila genusEnvironmental Risk FactorEpithelial CellsEpitheliumEuropeanGenesGeneticGenetic DiseasesGenetic ScreeningGerm-FreeGoalsHumanIntestinal MotilityIntestinesIon ChannelLongevityLungMessenger RNAMicroRNAsModelingMucinsMucous body substanceMutationNewborn InfantOrganOrthologous GeneOther GeneticsOutcomePancreasPathologyPatientsPersonsPhenotypeProliferatingRegulationRegulator GenesRespiratory SystemSignal PathwaySinusSodiumSurfaceSymptomsTherapeuticTimeToxic effectUnited StatesUp-RegulationWaterWorkabsorptionautosomeclinical phenotypeclinically relevantcohortcostcystic fibrosis patientsdifferential expressiondisease phenotypedrug actiondysbiosisepithelial Na+ channelflygastrointestinal epitheliuminhibitorinsightknock-downloss of function mutationmicrobiomemodel organismmolecular targeted therapiesmutantnew therapeutic targetoverexpressionrecessive genetic traitreproductive organsensortherapeutic targettranscription factor
项目摘要
Summary/abstract
Cystic Fibrosis (CF) is genetic disorder that effects approximately 30,000 people in the United states and more
then 70,000 worldwide. CF is caused by mutations in the epithelial chloride channel CF transmembrane
conductance regulator (CFTR) gene. In CF, loss-of-function mutations in CFTR, reduces chloride efflux from
cells, and elevates the activity of the epithelial sodium channel (ENaC) through a mechanism that is not fully
understood. This results in an increase sodium and water reabsorption, which ultimately leads to dehydration of
the epithelial surface and reduction in mucus transport in multiple mucin-producing organs, such as the lungs,
sinuses, intestine, pancreas, and reproductive organs. CF patients develop clinical symptoms in all these mucus-
producing organs. In particular, most CF patients have shortened lifespans because of loss of CFTR in the
respiratory tract, but also develop gut phenotypes early in the progression of the disease. These gut phenotypes
are less studied than the lung phenotypes of CF but still significantly impact CF patients lives. While CF is caused
by many different mutations in CFTR, the differences in CFTR function cannot explain the differences in patient
symptoms. This indicates that many of the clinical phenotypes of CF are influenced by genetic modifiers and/or
environmental factors. These genetic modifiers and environmental factors could be additional targets to develop
treatments for CF that could be used to treat all patients regardless of the mutation they harbor. However, many
of the potential genetic modifiers of CF are not well studied and the mechanism by which they modify CF
phenotypes is unknown.
Our lab has recently identified a Drosophila ortholog of the CFTR gene and established a CF model in
the fly gut epithelium. In addition to observing CF phenotypes in the gut epithelium of CFTR mutant flies, we
uncovered a micro RNA, mir263a, as a negative regulator of ENaC activity. Interestingly, the expression of
mir263a is decreased in CFTR mutant flies, suggesting that that the regulation of ENAC by CFTR is regulated
in part by mir263a. Here, I propose to further characterize the pathology of the fly mutant model including
examining how bacteria can modulate disease phenotypes in this model. I will then use the fly CF model to gain
new insight into ENaC, a known modifier of the CF phenotype. Finally, as the short lifespan, low cost, and genetic
tractability of the fly makes it an ideal model organism to perform genetic screens, I propose to identify new
potential genetic modifiers of CF. Altogether this work will establish Drosophila as a useful model to study CF
and potentially provide new molecular targets for treatment of the disease.
摘要/摘要
囊性纤维化(CF)是遗传疾病,在美国影响约30,000人,更多
然后在全球70,000。 CF是由上皮氯化物通道CF跨膜突变引起的
电导调节剂(CFTR)基因。在CF中,CFTR的功能丧失突变,减少了氯化物外排
细胞,并通过不完全的机制提高上皮钠通道(ENAC)的活性
理解。这导致钠和水的吸收增加,最终导致
多个产生粘蛋白的器官(例如肺,
鼻窦,肠,胰腺和生殖器官。 CF患者在所有这些粘液中出现临床症状 -
产生器官。特别是,由于CFTR失去了CFTR,大多数CF患者的寿命缩短
呼吸道,但在疾病进展的早期也会发展出肠道表型。这些肠道表型
与CF的肺表型相比,研究较少,但仍然显着影响CF患者的生活。当CF引起
通过CFTR中许多不同的突变,CFTR功能的差异无法解释患者的差异
症状。这表明CF的许多临床表型都受遗传修饰剂和/或的影响
环境因素。这些遗传修饰符和环境因素可能是发展的其他目标
CF的治疗方法可用于治疗所有患者,而不管他们携带的突变如何。但是,很多
在CF的潜在遗传修饰符中,没有很好地研究其修改CF的机制
表型未知。
我们的实验室最近确定了CFTR基因的果蝇直系同源物,并在
飞肠上皮。除了观察CFTR突变体肠道上皮中的CF表型外,我们还
发现了微RNA,miR263a,作为ENAC活性的负调节剂。有趣的是,表达
CFTR突变蝇中的miR263a降低,表明调节CFTR的ENAC调节
部分由mir263a。在这里,我建议进一步表征蝇突变模型的病理
检查细菌如何在该模型中调节疾病表型。然后,我将使用Fly CF模型获得
对ENAC的新见解,ENAC是CF表型的已知修饰符。最后,作为寿命短,低成本和遗传
苍蝇的障碍性使其成为执行遗传筛查的理想模型生物,我建议识别新的
CF的潜在遗传修饰符。总共这项工作将建立果蝇作为研究CF的有用模型
并有可能为治疗该疾病的新分子靶标提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Lane其他文献
Elizabeth Lane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Lane', 18)}}的其他基金
Drosophila as a model to study modifiers of Cystic Fibrosis
果蝇作为研究囊性纤维化修饰因子的模型
- 批准号:
10593250 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
Drosophila as a model to study modifiers of Cystic Fibrosis
果蝇作为研究囊性纤维化修饰因子的模型
- 批准号:
10386551 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
Regulation of de novo lipogenesis through BAD-dependent glucose signaling
通过 BAD 依赖性葡萄糖信号传导调节从头脂肪生成
- 批准号:
9244778 - 财政年份:2015
- 资助金额:
$ 7.43万 - 项目类别:
Regulation of de novo lipogenesis through BAD-dependent glucose signaling
通过 BAD 依赖性葡萄糖信号传导调节从头脂肪生成
- 批准号:
8897058 - 财政年份:2015
- 资助金额:
$ 7.43万 - 项目类别:
相似国自然基金
黄杆菌科细菌藻类多糖降解功能的演化机制研究
- 批准号:32370006
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
细菌胞外代谢构建纳米硫复合正极及其锂硫电池性能强化机制
- 批准号:52302316
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双特异性抗体囊泡对胞内细菌感染的免疫综合机制研究
- 批准号:82304366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ac-225标记的工程化细菌外膜囊泡用于肿瘤放射免疫治疗与机制探究
- 批准号:32301169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道类器官模型探讨T6SS在细菌感染过程中对宿主MAPK信号通路的调控作用及机制研究
- 批准号:32300597
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 7.43万 - 项目类别:
Bacterial metabolism of catechol-O-methyltransferase inhibitors alters drug efficacy and toxicity
儿茶酚-O-甲基转移酶抑制剂的细菌代谢改变药物疗效和毒性
- 批准号:
10606184 - 财政年份:2023
- 资助金额:
$ 7.43万 - 项目类别:
Investigating the Contribution of the Coxiella Cell Wall to Intracellular Pathogenesis
研究柯克斯体细胞壁对细胞内发病机制的贡献
- 批准号:
10593290 - 财政年份:2023
- 资助金额:
$ 7.43万 - 项目类别:
The role of NQR in ROS-dependent virulence regulation in Vibrio cholerae
NQR 在霍乱弧菌 ROS 依赖性毒力调节中的作用
- 批准号:
10721326 - 财政年份:2023
- 资助金额:
$ 7.43万 - 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 7.43万 - 项目类别: