Molecular mechanisms of intersecting human telomeric functions
人类端粒功能交叉的分子机制
基本信息
- 批准号:10550394
- 负责人:
- 金额:$ 37.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-06 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:BindingBiochemicalBiochemistryBiologicalCell ProliferationCellsCellular biologyChromosomesComplexCrystallographyCytoskeletonDNADNA DamageDiseaseEnsureEnzymesFunctional disorderGenetic Crossing OverGenetic RecombinationGenomeGerm CellsHumanInfertilityKnowledgeMalignant NeoplasmsMeiosisMolecularNuclear EnvelopePathway interactionsProcessProductionProteinsRNARibonucleoproteinsS phaseSomatic CellStructureTelomeraseTestingTherapeuticcancer cellgenome integrityhuman diseasenovel therapeutic interventionnovel therapeuticsprotein complexrecruitstem cellsstem-like celltelomeretherapeutic development
项目摘要
Molecular mechanisms of intersecting human telomeric functions
Project Summary/Abstract
Telomeres perform three essential functions in human cells. First, telomeres protect chromosomes against
catastrophic end-to-end fusions by shielding them from the DNA damage sensing pathways. A six-membered
protein complex called shelterin binds specifically to telomeric DNA to afford end protection. Second, telomeres
facilitate end replication, allowing proliferating cells like stem/progenitor cells and cancer cells to replenish
chromosome ends. A complex ribonucleoprotein enzyme called telomerase helps solve end replication.
Telomerase facilitates end replication by adding telomeric DNA to chromosome ends using its RNA template.
While telomerase activation in somatic cells is a hallmark of cancer, telomerase dysfunction in stem cells
results in diseases called telomeropathies. Shelterin must protect chromosome ends from illicit DNA fusions
but allow telomerase to access the same ends. A shelterin protein called TPP1 is instrumental in recruiting
telomerase to telomeres, allowing shelterin to facilitate end protection and end replication, but the molecular
mechanism of how TPP1 switches from end-protection mode to end-replication mode during S-phase is not
known. Third, telomeres help homologous chromosomes undergo pairing and meiotic crossover to facilitate
gamete production. To perform this function, telomeres attach to the nuclear envelope with the help of a
meiosis-specific protein complex called TERB1-TERB2-MAJIN and connect with the cytoskeletal force-
generating machinery. This allows chromosomes to move, enabling homologous chromosomes to pair up and
undergo meiotic crossover. Paired meiotic chromosomes must be protected from telomeric recombination at
the nuclear envelope, but how this occurs is not known at the molecular level. Illuminating the molecular
interplay between the three telomeric functions will enrich our understanding of how genome integrity is upheld
and suggest novel therapeutic avenues for diseases like cancers, telomeropathies, and infertility. This proposal
aims to apply the knowledge of telomeres, telomerase, and meiotic assemblies, and expertise in biochemistry,
crystallography, and cell biology to understand how human telomeres perform their three critical functions,
especially in the contexts where these clash with one another. It also aims to discover new factors responsible
for upholding these functions and reveal their underlying biochemical activities. Finally, this proposal aims to
dissect the molecular mechanism of disease caused by the disruption of these functions and test new
strategies for therapeutic development. The proposed approach to dissect the molecular mechanisms of
intersecting telomeric processes will enhance our knowledge of how telomeres enable genome integrity and
suggest therapeutic opportunities to tackle telomere dysfunction in disease.
人类端粒功能交叉的分子机制
项目概要/摘要
端粒在人体细胞中执行三个基本功能。首先,端粒可以保护染色体免受
通过保护它们免受 DNA 损伤传感途径的影响来实现灾难性的端到端融合。六人组成
称为庇护蛋白的蛋白质复合物与端粒 DNA 特异性结合以提供末端保护。二、端粒
促进末端复制,使干细胞/祖细胞和癌细胞等增殖细胞得以补充
染色体末端。一种称为端粒酶的复杂核糖核蛋白酶有助于解决末端复制问题。
端粒酶通过使用其 RNA 模板将端粒 DNA 添加到染色体末端来促进末端复制。
虽然体细胞中的端粒酶激活是癌症的标志,但干细胞中的端粒酶功能障碍
导致称为端粒病的疾病。 Shelterin 必须保护染色体末端免遭非法 DNA 融合
但允许端粒酶访问相同的末端。一种名为 TPP1 的庇护蛋白有助于招募
端粒酶连接到端粒,使庇护蛋白能够促进末端保护和末端复制,但分子
TPP1 在 S 阶段如何从末端保护模式切换到末端复制模式的机制尚不明确。
已知。第三,端粒帮助同源染色体进行配对和减数分裂交叉,以促进
配子的产生。为了执行此功能,端粒借助
减数分裂特异性蛋白复合物,称为 TERB1-TERB2-MAJIN,与细胞骨架力相连
发电机械。这使得染色体能够移动,使同源染色体能够配对并结合
进行减数分裂交叉。必须保护配对减数分裂染色体免于端粒重组
核膜,但在分子水平上尚不清楚这是如何发生的。照亮分子
三种端粒功能之间的相互作用将丰富我们对如何维护基因组完整性的理解
并提出了癌症、端粒病和不孕症等疾病的新治疗途径。这个提议
旨在应用端粒、端粒酶和减数分裂组装的知识以及生物化学方面的专业知识,
晶体学和细胞生物学,以了解人类端粒如何发挥其三个关键功能,
尤其是在这些因素相互冲突的情况下。它还旨在发现新的影响因素
以维持这些功能并揭示其潜在的生化活性。最后,本提案旨在
剖析由这些功能破坏引起的疾病的分子机制并测试新的
治疗开发策略。所提出的剖析分子机制的方法
交叉端粒过程将增强我们对端粒如何实现基因组完整性和
提出解决疾病中端粒功能障碍的治疗机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayakrishnan Nandakumar其他文献
Jayakrishnan Nandakumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayakrishnan Nandakumar', 18)}}的其他基金
Mechanisms of chromosome motility during mammalian meiosis
哺乳动物减数分裂过程中染色体运动的机制
- 批准号:
10442797 - 财政年份:2022
- 资助金额:
$ 37.87万 - 项目类别:
Mechanisms of chromosome motility during mammalian meiosis
哺乳动物减数分裂过程中染色体运动的机制
- 批准号:
10672204 - 财政年份:2022
- 资助金额:
$ 37.87万 - 项目类别:
The role fo the TPP1 peotein in telomerase function and cancer cell survival
TPP1蛋白在端粒酶功能和癌细胞存活中的作用
- 批准号:
8724761 - 财政年份:2013
- 资助金额:
$ 37.87万 - 项目类别:
The role fo the TPP1 peotein in telomerase function and cancer cell survival
TPP1蛋白在端粒酶功能和癌细胞存活中的作用
- 批准号:
8731837 - 财政年份:2013
- 资助金额:
$ 37.87万 - 项目类别:
Separation-of-function Mutants to Study the Biological Significance of Telomerase
功能分离突变体研究端粒酶的生物学意义
- 批准号:
8298843 - 财政年份:2012
- 资助金额:
$ 37.87万 - 项目类别:
相似国自然基金
森林冠层LAI和叶片生化参数遥感协同反演关键方法研究
- 批准号:41801251
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
盐和污水胁迫下红树植物生化组分高光谱反演
- 批准号:41601362
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
极大倾角光纤光栅SPR的超痕量生化传感基础研究
- 批准号:61505017
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于准连续中红外频率梳的微纳生化传感关键器件研究
- 批准号:61405139
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于小波分析的作物冠层结构与生理生化参数光谱响应分解研究
- 批准号:31470084
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Biochemistry of Eukaryotic Replication Fork and DNA Repair
真核复制叉的生物化学和 DNA 修复
- 批准号:
10550045 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
- 批准号:
10664707 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
International Retroviral Symposium: Assembly, Maturation and Uncoating
国际逆转录病毒研讨会:组装、成熟和脱壳
- 批准号:
10762858 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别: