Mechanisms of mitochondrial mutation rate variation across eukaryotes
真核生物线粒体突变率变异的机制
基本信息
- 批准号:10549690
- 负责人:
- 金额:$ 38.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelBiological ModelsCharacteristicsDNA DamageDNA RepairDNA SequenceDiseaseEukaryotaEventExhibitsFrequenciesFutureGene FamilyGenomeHumanInheritedInvestigationLengthLifeMapsMetabolicMismatch RepairMitochondriaMitochondrial DNAMutationNatureNucleotide Excision RepairNucleotidesOligonucleotidesOrganellesOxidative PhosphorylationPathway interactionsPlantsPoint MutationPositioning AttributeResearchResolutionSiteTechnologyTestingTreesUltraviolet RaysUncertaintyVariantVirusWorkage relatedbasede novo mutationhuman modelinnovationmembermitochondrial genomenovelprogramsrecombinational repairrepaired
项目摘要
PROJECT SUMMARY
High mutation rates in mitochondrial DNA (mtDNA) are a major cause of inherited and age-related diseases.
There is a longstanding view that the mutation-prone nature of mitochondrial genomes in humans and animal
models is a byproduct of the intense metabolic activity associated with oxidative phosphorylation and energy
conversion. However, recent evidence has challenged this idea, and there is growing recognition that
differences in the enzymatic machinery responsible for mtDNA replication and repair are a key cause of high
mutation rates in human mtDNA. Variation in mtDNA replication and repair pathways may also explain why
some eukaryotic lineages (e.g., plants) are able to suppress mutation rates in their mitochondrial genomes to
exceptionally low levels. An overarching theme of our research program is to identify the mechanisms
responsible for variation in mitochondrial mutation rates across eukaryotes and thereby help resolve the long-
term uncertainties about why rates are so high in humans. To overcome the technical challenges associated
with investigating rare events like de novo mutations, we have applied multiple innovative sequencing
technologies that can detect new DNA sequence variants present at ultra-low frequencies, essentially
capturing mutations and damaged bases as they occur and mapping them to nucleotide-level resolution. Our
future work will address two major questions. First, how do plant mitochondria achieve some of the lowest
rates of point mutations ever observed (less than one substitution per site per billion years)? This line of
investigation will build off our recent discovery that plant-MSH1 is necessary for maintaining low mutation rates
in plant organelle genomes. MSH1 is enigmatic member of the MutS gene family which was likely acquired by
horizontal transfer from giant viruses. We will test the hypothesis that it is part of a novel mechanism of
mismatch repair that induces double-stranded breaks followed by template-based recombinational repair.
Second, how do mitochondria repair bulky DNA damage introduced by UV? We will test the hypothesis that
mitochondria contain a previously unrecognized repair pathway with similarities to classic nucleotide excision
repair (NER). This hypothesis is motivated by our recent observation that exposure of divergent eukaryotic
model systems to UV light results in the release of mtDNA-derived oligonucleotides that carry damaged bases
at consistent positions and exhibit characteristic length profiles, a hallmark of NER. Overall, this research
program will help determine why mitochondrial genomes exhibit such extreme mutation rate variation across
the eukaryotic tree of life.
项目摘要
线粒体DNA(mtDNA)的高突变率是遗传性疾病和年龄相关的主要原因。
长期以来的观点是,人类和动物中线粒体基因组的突变性质
模型是与氧化磷酸化和能量相关的强烈代谢活性的副产品
转换。但是,最近的证据挑战了这一想法,并且越来越认识到
负责mtDNA复制和修复的酶机制的差异是高度的关键原因
人mtDNA的突变率。 mtDNA复制和修复途径的变化也可以解释为什么
一些真核生物谱系(例如植物)能够抑制其线粒体基因组中的突变率
极低的水平。我们研究计划的总体主题是确定机制
负责真核生物之间线粒体突变率的变化,从而有助于解决长期
关于为什么人类的费率如此之高的术语不确定性。克服相关的技术挑战
通过调查诸如从头突变之类的罕见事件,我们应用了多个创新测序
可以检测到具有超低频率的新的DNA序列变体的技术,本质上是
捕获突变并在发生时损坏的碱基,并将其映射到核苷酸级分辨率。我们的
未来的工作将解决两个主要问题。首先,植物线粒体如何达到最低的一些
观察到的点突变发生率(每十亿年的替代少于一个替代)?这条线
调查将建立我们最近发现的,即植物-MSH1对于保持低突变率是必要的
在植物细胞器基因组中。 MSH1是Muts基因家族的神秘成员,很可能是由
从巨型病毒中的水平转移。我们将检验以下假设:它是一种新型机制的一部分
不匹配的修复会导致双链断裂,然后是基于模板的重组维修。
其次,线粒体修复紫外线引入的大量DNA损伤如何?我们将检验以下假设
线粒体包含先前未识别的修复途径,与经典核苷酸切除相似
维修(NER)。我们最近的观察结果激发了这一假设
紫外线的模型系统会导致释放mtDNA衍生的寡核苷酸,这些寡核苷酸载有受损的碱基
在一致的位置和展示特征长度曲线上,NER的标志。总体而言,这项研究
程序将有助于确定为什么线粒体基因组在整个范围内表现出如此极端的突变率变化
真核的生命树。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating low frequency somatic mutations in Arabidopsis with Duplex Sequencing.
通过双重测序研究拟南芥中的低频体细胞突变。
- DOI:10.1101/2024.01.31.578196
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Waneka,Gus;Pate,Braden;Monroe,JGrey;Sloan,DanielB
- 通讯作者:Sloan,DanielB
Chromosome-level genome assembly for the angiosperm Silene conica.
被子植物 Silene conica 的染色体水平基因组组装。
- DOI:10.1101/2023.09.05.556365
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fields,PeterD;Weber,MelodyM;Waneka,Gus;Broz,AmandaK;Sloan,DanielB
- 通讯作者:Sloan,DanielB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Benjamin Sloan其他文献
Daniel Benjamin Sloan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Benjamin Sloan', 18)}}的其他基金
Causes of Extreme Mitochondrial Mutation Rate Variation
线粒体突变率极端变化的原因
- 批准号:
10218200 - 财政年份:2017
- 资助金额:
$ 38.36万 - 项目类别:
Causes of Extreme Mitochondrial Mutation Rate Variation
线粒体突变率极端变化的原因
- 批准号:
9303162 - 财政年份:2017
- 资助金额:
$ 38.36万 - 项目类别:
Causes of Extreme Mitochondrial Mutation Rate Variation
线粒体突变率极端变化的原因
- 批准号:
9980933 - 财政年份:2017
- 资助金额:
$ 38.36万 - 项目类别:
Causes of Extreme Mitochondrial Mutation Rate Variation
线粒体突变率极端变化的原因
- 批准号:
9752578 - 财政年份:2017
- 资助金额:
$ 38.36万 - 项目类别:
Genomic Interactions between Psyllids and Their Obligately Intracellular Bacteria
木虱与其专性细胞内细菌之间的基因组相互作用
- 批准号:
8370582 - 财政年份:2011
- 资助金额:
$ 38.36万 - 项目类别:
Genomic Interactions between Psyllids and Their Obligately Intracellular Bacteria
木虱与其专性细胞内细菌之间的基因组相互作用
- 批准号:
8202612 - 财政年份:2011
- 资助金额:
$ 38.36万 - 项目类别:
相似国自然基金
基于必需同源特征与相位特异K-mer频率的真核生物通用的必需基因理论识别模型
- 批准号:32370696
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多时序多模态MR特征和人工智能技术构建骨肉瘤预后的早期预测模型及其生物学可解释性研究
- 批准号:82373108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脉络膜黑色素瘤循环血内肿瘤细胞的捕获、扩增、生物学特征分析与外泌体载药模型构建的研究
- 批准号:82303540
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
隐私保护条件下的生物特征识别模型训练
- 批准号:62276030
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
基于角膜地形图形态-生物力学双眼差异特征的人工智能早期圆锥角膜诊断与预测模型研究
- 批准号:82101183
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
- 批准号:
10696538 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Adult human brain tissue cultures to study neuroHIV
成人脑组织培养研究神经艾滋病毒
- 批准号:
10619170 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Interrogating human anti-staphylococcal antibody responses for S. aureus vaccine insights
探究人类抗葡萄球菌抗体反应以获得金黄色葡萄球菌疫苗见解
- 批准号:
10826874 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Human-iPSC derived neuromuscular junctions as a model for neuromuscular diseases.
人 iPSC 衍生的神经肌肉接头作为神经肌肉疾病的模型。
- 批准号:
10727888 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别: