Elucidating mechanisms of acetylcholine signaling in bacterial biofilms
阐明细菌生物膜中乙酰胆碱信号传导机制
基本信息
- 批准号:10538066
- 负责人:
- 金额:$ 4.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAnimal ModelAntibioticsAntimicrobial ResistanceBacillusBacillus subtilisBacteriaBacterial GenesBehaviorBiological ModelsCell CommunicationCell membraneCellsCholine O-AcetyltransferaseCommunitiesComplexCritical PathwaysDataDetectionDevelopmentDiseaseExhibitsExtracellular MatrixFoundationsGene ExpressionGene Expression RegulationGenesGeneticGenomicsGoalsGram-Positive BacteriaGrowthHomeostasisHumanInfectionIonsKnowledgeLaboratoriesLibrariesLocationMapsMembrane PotentialsMetabolicMetabolic PathwayMetabolismMicrobeMicrobial BiofilmsMicrobiologyMicrofluidicsMicroscopyMorphologyNutrientOrganismOutcomePathway interactionsPhenotypePhysiologicalProductionPropertyPublic HealthResearchSignal PathwaySignal TransductionSignaling MoleculeSorting - Cell MovementSystemTimebasecell growthextracellularfitnessgene discoverygene synthesisgut-brain axisimprovedin vivoinsightknowledge basemutantquorum sensingscreeningsensorsuccesstreatment strategy
项目摘要
Project Summary
While microbes are single-celled organisms, they naturally form densely packed communities known as biofilms.
Biofilms pose a major public health challenge as they often cause difficult-to-treat infections that exhibit
properties such as antimicrobial resistance and persistence even with long courses of antibiotics. Since
microbiology research has often been conducted using domesticated strains under controlled laboratory
conditions where biofilms do not form, there is a need for understanding emergent behavior that only exists in
biofilms. Integrating bacterial gene regulation and metabolism with biofilm morphology and behavior requires a
model system with sufficiently mapped genetic and metabolic pathways, established genetic tractability, and
known biofilm growth conditions. For these reasons, Bacillus subtilis is considered a model organism for biofilm
studies. Bacillus subtilis biofilms are composed of a network of resident cells and tightly regulated extracellular
matrix. Initial biofilm formation and matrix expression is controlled by the expression of master regulators that
respond to traditional quorum-sensing molecules. However, newly appreciated ion-based signaling in Bacillus
subtilis is critical for community level fitness by coordinating nutrient sharing within a biofilm. This discovery
highlights signaling pathways that are critical for the formation and overall fitness of biofilms yet remain
undiscovered. To help close this gap in knowledge, we will focus on discovering the synthesis genes for
acetylcholine and acetylcholine-based cell-to-cell signaling phenotypes. Our leading hypothesis is acetylcholine
acts as a signaling molecule in cell-to-cell communications within biofilms. Aim 1 will identify acetylcholine biofilm
signaling phenotypes using microscopy and Aim 2 will identify the genes responsible for acetylcholine synthesis.
The overarching goal of this project is to provide the first description of genetic, metabolic, and physiological
mechanisms for acetylcholine in all bacterial species. Additionally, the function of and synthesis gene(s)
responsible for acetylcholine production will provide the scientific community with the foundational knowledge to
explore bacterial homologs in other species and how signaling within bacteria may also impact complex systems
like the human gut-brain-axis in development and disease.
项目概要
虽然微生物是单细胞生物,但它们自然形成密集的群落,称为生物膜。
生物膜构成了重大的公共卫生挑战,因为它们经常引起难以治疗的感染,这些感染表现出
抗生素耐药性和持久性等特性,即使是长期服用抗生素。自从
微生物学研究通常是在受控实验室下使用驯化菌株进行的
在不形成生物膜的条件下,需要了解仅存在于生物膜中的紧急行为
生物膜。将细菌基因调控和代谢与生物膜形态和行为相结合需要
模型系统具有充分映射的遗传和代谢途径,建立了遗传易处理性,以及
已知的生物膜生长条件。由于这些原因,枯草芽孢杆菌被认为是生物膜的模式生物
研究。枯草芽孢杆菌生物膜由常驻细胞网络和严格调控的细胞外细胞组成
矩阵。初始生物膜形成和基质表达由主调节因子的表达控制,
对传统的群体感应分子做出反应。然而,芽孢杆菌中新近认识到的基于离子的信号传导
枯草芽孢杆菌通过协调生物膜内的营养共享,对于社区水平的健康至关重要。这一发现
强调对生物膜的形成和整体适应性至关重要的信号通路仍然存在
未被发现。为了帮助缩小这一知识差距,我们将专注于发现合成基因
乙酰胆碱和基于乙酰胆碱的细胞间信号传导表型。我们的主要假设是乙酰胆碱
作为生物膜内细胞间通讯的信号分子。目标 1 将识别乙酰胆碱生物膜
使用显微镜和 Aim 2 的信号传导表型将鉴定负责乙酰胆碱合成的基因。
该项目的总体目标是提供遗传、代谢和生理学的第一个描述
所有细菌物种中乙酰胆碱的机制。此外,基因的功能和合成
负责乙酰胆碱生产的将为科学界提供基础知识
探索其他物种中的细菌同源物以及细菌内的信号传导如何影响复杂系统
就像人类发育和疾病中的肠脑轴一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Lander其他文献
Stephen Lander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Lander', 18)}}的其他基金
Elucidating mechanisms of acetylcholine signaling in bacterial biofilms
阐明细菌生物膜中乙酰胆碱信号传导机制
- 批准号:
10703228 - 财政年份:2022
- 资助金额:
$ 4.26万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Macrophage Inactivation in Sepsis after Shock or Trauma
休克或创伤后脓毒症中巨噬细胞失活
- 批准号:
8727574 - 财政年份:1999
- 资助金额:
$ 4.26万 - 项目类别:
Macrophage Inactivation in Sepsis after Shock or Trauma
休克或创伤后脓毒症中巨噬细胞失活
- 批准号:
8920590 - 财政年份:1999
- 资助金额:
$ 4.26万 - 项目类别:
Macrophage Inactivation in Sepsis after Shock or Trauma
休克或创伤后脓毒症中巨噬细胞失活
- 批准号:
8299870 - 财政年份:1999
- 资助金额:
$ 4.26万 - 项目类别:
Macrophage Inactivation in Sepsis after Shock or Trauma
休克或创伤后脓毒症中巨噬细胞失活
- 批准号:
8537204 - 财政年份:1999
- 资助金额:
$ 4.26万 - 项目类别: