Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.

球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。

基本信息

  • 批准号:
    10539146
  • 负责人:
  • 金额:
    $ 44.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-23 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Vaccines, drugs, and modified human cells that activate the immune system against tumor can improve the outcomes and prolong the lives of patients diagnosed with some type of cancers, but have failed to provide survival benefits for patients with glioblastoma (GBM). Activation of the Stimulator of Interferon Genes (STING) pathway represents one of the main innate immune sensing pathway to enable natural killer (NK) and T cell priming against tumor. Intratumoral administration of STING agonists, in particular cyclic dinucleotides (CDNs), was shown to have significant anti-tumor effects in multiple cancer models, including orthotopic GBM models, and is currently being tested in a phase 1 clinical trial in advanced cancer patients (NCT0267754339). Limited bioavailability and stability, however, are limiting factors for clinical CDN development. We have shown that the formulation of oligonucleotides into SNA structures, i.e., the presentation of oligonucleotides at high density on the surface of nanoparticles, leads to biochemical and biological properties that are radically different from those of linear (“free”) oligonucleotides. These include the cellular uptake of SNAs by a wide variety of cells, the gene regulatory activity of SNAs functionalized with siRNA or antisense DNA oligonucleotides, and the TLR-agonistic activity of SNAs conjugated with immunostimulatory oligonucleotides. Importantly, clinical trials with first generation siRNA-based SNAs (NCT03020017; GBM), and toll-like receptor 9 (TLR9)-agonsitic SNAs (NCT03086278; solid cancers) have recently been completed. Our proposed research is to develop a first-in-class immunotherapy by targeting cGAS – the sensor of cytosolic dsDNA upstream of STING – with SNAs presenting interferon-stimulating DNA (ISD) oligonucleotides at high surface density, and to evaluate the potential of SNAcGAS for use in clinical neuro-oncology. This approach is distinct from other current approaches that target the STING pathway with CDNs and small molecules. By targeting cGAS, the strategy of using SNAsISD exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. Our use of SNAs addresses the challenges of delivery of therapeutic nucleic acids through the enhanced uptake of nucleic acids formulated as SNAs, and furthermore, exploits the polyvalent presentation of oligonucleotides at high density on a nanoparticle template. Here, the binding of closely-spaced, neighboring dsDNA molecules on the surfaces of SNAs should enhance the formation of 2:2 dimers of cGAS:DNA and thus lead to potent cGAS activation. In three Specific Aims, we will optimize the SNA platform for maximum cGAS-STING pathway activation in vitro and in vivo (Aim 1), assess anti-tumor effect of our lead SNAcGAS architectures together with additional high-activity SNA constructs in vivo (Aim 2), and evaluate treatment regimens combining SNAcGAS with prioritized immunotherapies, including check point blockade and pharmacological strategies to inhibit adenosine signaling (Aim 3).
激活免疫系统针对肿瘤的疫苗,药物和修饰的人类细胞可以改善 结果并延长被诊断出某种类型癌症的患者的寿命,但未能提供 胶质母细胞瘤(GBM)患者的生存益处。干扰素基因刺激剂的激活(sting) 途径代表了启用天然杀手(NK)和T细胞的主要先天免疫传感途径之一 针对肿瘤的启动。肿瘤内刺痛激动剂,特别是环状二核苷酸(CDN), 被证明在多种癌症模型中具有显着的抗肿瘤作用,包括原位GBM模型, 目前正在一项1期临床试验中对晚期癌症患者进行测试(NCT0267754339)。有限的 但是,生物利用度和稳定性是临床CDN发育的限制因素。 我们已经表明,寡核苷酸的公式为SNA结构,即表示 纳米颗粒表面高密度的寡核苷酸,导致生化特性 与线性(“自由”)寡核苷酸的完全不同。这些包括SNA的细胞摄取 通过多种细胞,SNA的基因调节活性用siRNA或反义DNA官能化 寡核苷酸以及与免疫刺激性寡核苷酸结合的SNA的TLR激动活性。 重要的是,第一代基于siRNA的SNA(NCT03020017; GBM)和Toll样接收器的临床试验 9(TLR9) - 附加性SNA(NCT03086278;固体癌症)最近已完成。 我们提出的研究是通过靶向CGA来开发一流的免疫疗法 - 胞质的传感器 DSDNA上游的刺激性 - SNA呈现干扰素刺激DNA(ISD)寡核苷酸在高高处 表面密度,并评估SNACGA在临床神经肿瘤学中使用的潜力。这种方法是 不同于其他目前用CDN和小分子靶向刺激途径的方法。经过 针对CGA,使用SNASISD的策略利用了CGA通过交付的能力提高刺痛反应的能力 DSDNA并诱导内源性CDN的催化产生。我们对SNA的使用解决了挑战 通过增强的核酸摄取,以SNA的配方增强了热核酸的递送, 此外,利用纳米颗粒模板上高密度的寡核苷酸的多价表示。 在这里,SNA表面上的紧密间隔,相邻的dsDNA分子的结合应增强 CGA的2:2二聚体形成:DNA,从而导致潜在的CGA激活。在三个具体目标中,我们 将优化SNA平台,以在体外和体内激活最大的CGAS刺激途径(AIM 1),评估 我们的铅Snacgas架构的抗肿瘤效应以及在体内的其他高活动性SNA构建体 (AIM 2),并评估将SNACGA与优先免疫疗法相结合的治疗方案,包括检查 点封锁和药物策略抑制腺苷信号传导(AIM 3)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHAD A. MIRKIN其他文献

CHAD A. MIRKIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHAD A. MIRKIN', 18)}}的其他基金

Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
  • 批准号:
    10709540
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Innovative Research for Cancer Nanotechnology (IRCN) for Enhancing Melanoma-specific Immune Responses by the Rational Design of Spherical Nucleic Acids
通过合理设计球形核酸增强黑色素瘤特异性免疫反应的癌症纳米技术 (IRCN) 创新研究
  • 批准号:
    10402178
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Innovative Research for Cancer Nanotechnology (IRCN) for Enhancing Melanoma-specific Immune Responses by the Rational Design of Spherical Nucleic Acids
通过合理设计球形核酸增强黑色素瘤特异性免疫反应的癌症纳米技术 (IRCN) 创新研究
  • 批准号:
    10591545
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Systemic RNA interference to reactivate p53 tumor suppression
系统性 RNA 干扰重新激活 p53 肿瘤抑制
  • 批准号:
    10091404
  • 财政年份:
    2017
  • 资助金额:
    $ 44.35万
  • 项目类别:
Nucleic Acid-Based Nanoconstructs for the Treatment of Cancer
用于治疗癌症的基于核酸的纳米结构
  • 批准号:
    8962037
  • 财政年份:
    2015
  • 资助金额:
    $ 44.35万
  • 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
  • 批准号:
    8433345
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
siRNA-gold nanoparticle mediated ganglioside depletion for diabetic wound healing
siRNA-金纳米粒子介导的神经节苷脂消耗促进糖尿病伤口愈合
  • 批准号:
    8513708
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
  • 批准号:
    8237282
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
  • 批准号:
    8632993
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
siRNA-gold nanoparticle mediated ganglioside depletion for diabetic wound healing
siRNA-金纳米粒子介导的神经节苷脂消耗促进糖尿病伤口愈合
  • 批准号:
    8435386
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:

相似海外基金

Mechanisms of Mammalian Genetic Hearing Loss
哺乳动物遗传性听力损失的机制
  • 批准号:
    10660134
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
Regulation of Human Tumorigensis by Cancer Specific NXF1 Adaptor Proteins
癌症特异性 NXF1 接头蛋白对人类肿瘤发生的调节
  • 批准号:
    10411472
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Regulation of epidermal growth and differentiation through mRNA export
通过 mRNA 输出调节表皮生长和分化
  • 批准号:
    10675700
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Regulation of Human Tumorigensis by Cancer Specific NXF1 Adaptor Proteins
癌症特异性 NXF1 接头蛋白对人类肿瘤发生的调节
  • 批准号:
    10596156
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
  • 批准号:
    10709540
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了