Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
基本信息
- 批准号:10531998
- 负责人:
- 金额:$ 8.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAmericanAmputeesAreaArtificial LegBiomechanicsClinicalCommunitiesDataDegree programDevice or Instrument DevelopmentDevicesDoctor of PhilosophyElectrical EngineeringEnvironmentGaitGait speedGenerationsGoalsHandHomeHourHumanHuman bodyJointsKneeKnowledgeLeadLegLifeLocomotionLower ExtremityMachine LearningMathematical Model SimulationMeasurableMeasuresMechanicsMedical centerMethodologyMethodsMissionModelingMotionMotorMotor ActivityNational Institute of Biomedical Imaging and BioengineeringNational Institute of Child Health and Human DevelopmentOrthotic DevicesOutcomePhasePlayProcessProgram DevelopmentProsthesisPublic HealthQuality of lifeResearchResearch PersonnelRunningSamplingSpeedSpinal cord injuryStrokeStudy modelsSystemTechnical ExpertiseTechnologyTimeUnited States National Institutes of HealthWalkingWorkankle prosthesisbaseclinical applicationclinically significantdesignexoskeletonexperiencehuman datahuman modelimprovedinnovationkinematicsmathematical modelmultidisciplinarypowered prosthesisprogramsprosthesis controlrehabilitation researchrobot controlsensorsuccesstechnology developmenttemporal measurementtrend
项目摘要
PROJECT ABSTRACT
Above-knee amputees often struggle to perform the varying activities of daily life with conventional prostheses.
Emerging powered knee-ankle prostheses have motors that can restore normative biomechanics, but these
devices are limited to a small set of pre-defined activities that must be tuned to the user by technical experts
over several hours. The overall goal of this project is to model and control human locomotion over
continuously varying tasks for the design of agile, powered prostheses that require little to no tuning. The
universal use of different task-specific controllers in current powered legs is a direct consequence of the
prevailing paradigm for viewing human locomotion as a discrete set of activities. There is a fundamental gap in
knowledge about how to analyze, model, and control continuously varying locomotion, which greatly limits the
adaptability and agility of powered prostheses. The central hypothesis of this project is that continuously
varying activities can be represented by a single mathematical model based on measureable physical quantities
called task variables. The proposed project will be scientifically significant to understanding how humans
continuously adapt to varying activities and environments, technologically significant to the design of agile,
user-synchronized powered prosthetic legs, and clinically significant to the adoption of powered knee-ankle
prostheses for improved community ambulation. The proposed model of human locomotion will enable new
prosthetic strategies for controlling and adapting to the environment, which aligns with the missions of the
NICHD/NCMRR Devices and Technology Development program area and the NIBIB Mathematical Modeling,
Simulation, and Analysis program. The innovation of this work is encompassed in 1) a continuous paradigm
for variable locomotor activities that challenges the existing discrete paradigm, 2) a unified task control
methodology that drastically improves the agility of powered prosthetic legs, and 3) a partially automated
tuning process that significantly reduces the time and technical expertise required to configure powered knee-
ankle prostheses. This continuous task paradigm will provide new methods and models for studying human
locomotion across tasks and task transitions. This innovation will address a key roadblock in control
technology that currently restricts powered legs to a small set of activities that do not generalize well across
users. The adaptability of the proposed control paradigm across users and activities will transform the
prosthetics field with a new generation of “plug-and-play” powered legs for community ambulation.
项目摘要
膝上截肢者经常很难使用传统假肢进行日常生活中的各种活动。
新兴的动力膝踝假肢具有可以恢复正常生物力学的电机,但这些
设备仅限于一小组预定义的活动,必须由技术专家针对用户进行调整
该项目的总体目标是模拟和控制人体运动。
不断变化的任务,用于设计敏捷的动力假肢,几乎不需要调整。
在当前动力支路中普遍使用不同的任务特定控制器是
将人类运动视为一组离散活动的主流范式存在根本性差距。
关于如何分析、建模和控制连续变化的运动的知识,这极大地限制了
该项目的中心假设是不断地提高动力假肢的适应性和灵活性。
不同的活动可以通过基于可测量物理量的单一数学模型来表示
所提出的项目对于理解人类如何工作具有重要的科学意义。
不断适应不同的活动和环境,对敏捷设计具有技术意义,
用户同步动力假肢,对动力膝踝的采用具有临床意义
改善社区行走的假肢所提出的人体运动模型将实现新的功能。
控制和适应环境的假肢策略,与该组织的使命相一致
NICHD/NCMRR 设备和技术开发计划领域和 NIBIB 数学建模,
这项工作的创新之处在于 1) 连续范式。
对于挑战现有离散范式的可变运动活动,2)统一的任务控制
显着提高动力假肢敏捷性的方法,以及 3) 部分自动化
调整过程可显着减少配置动力膝关节所需的时间和技术专业知识
这种连续任务范式将为研究人类提供新的方法和模型。
这项创新将解决控制中的关键障碍。
目前将动力腿限制为一小部分活动的技术,这些活动不能很好地推广
所提出的控制范式在用户和活动之间的适应性将改变
假肢领域,配备新一代“即插即用”动力腿,用于社区行走。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert D Gregg其他文献
Robert D Gregg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert D Gregg', 18)}}的其他基金
Understanding Personalized Control with Modular Powered Orthoses
了解模块化动力矫形器的个性化控制
- 批准号:
10590336 - 财政年份:2022
- 资助金额:
$ 8.69万 - 项目类别:
Enhancing Voluntary Motion in Broad Patient Populations with Modular Powered Orthoses
使用模块化动力矫形器增强广大患者群体的自主运动
- 批准号:
10190208 - 财政年份:2021
- 资助金额:
$ 8.69万 - 项目类别:
Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
- 批准号:
10538545 - 财政年份:2018
- 资助金额:
$ 8.69万 - 项目类别:
Controlling Robot-Assisted Locomotion with Extended Kalman Filter Estimates of Phase and Activity
使用扩展卡尔曼滤波器估计相位和活动来控制机器人辅助运动
- 批准号:
10328286 - 财政年份:2018
- 资助金额:
$ 8.69万 - 项目类别:
Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
- 批准号:
10055806 - 财政年份:2018
- 资助金额:
$ 8.69万 - 项目类别:
Controlling Locomotion over Continuously Varying Activities for Agile Powered Prosthetic Legs
控制敏捷动力假肢连续变化活动的运动
- 批准号:
9925236 - 财政年份:2018
- 资助金额:
$ 8.69万 - 项目类别:
PHASE-BASED CONTROL OF LOCOMOTION FOR HIGH-PERFORMANCE PROSTHESES AND ORTHOSES
基于相位的高性能假肢和矫形器运动控制
- 批准号:
8569754 - 财政年份:2013
- 资助金额:
$ 8.69万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Implementation Evaluation of PACT Pharmacy Management of Heart Failure in VISN 21
VISN 21 心力衰竭 PACT 药房管理实施评价
- 批准号:
10753388 - 财政年份:2023
- 资助金额:
$ 8.69万 - 项目类别:
Increasing initiation of evidence-based weight loss treatment
越来越多地开始开展循证减肥治疗
- 批准号:
10735201 - 财政年份:2023
- 资助金额:
$ 8.69万 - 项目类别:
Integrating Tailored Postoperative Opioid Tapering and Pain Management Support for Patients on Long-Term Opioid Use Presenting for Spine Surgery (MIRHIQL)
为脊柱手术中长期使用阿片类药物的患者整合定制的术后阿片类药物逐渐减量和疼痛管理支持 (MIRHIQL)
- 批准号:
10722943 - 财政年份:2023
- 资助金额:
$ 8.69万 - 项目类别:
Screening and Brief Intervention for Prescription Stimulant Misuse and Diversion: Refining and Piloting a Curriculum for College Health Providers
针对处方兴奋剂滥用和转移的筛查和简短干预:为大学医疗服务提供者完善和试点课程
- 批准号:
10731122 - 财政年份:2023
- 资助金额:
$ 8.69万 - 项目类别: