Improving Suicide Risk Prediction with Social Determinants Data
利用社会决定因素数据改进自杀风险预测
基本信息
- 批准号:10528534
- 负责人:
- 金额:$ 46.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBankruptcyCessation of lifeCollectionDataData ElementData SetDiagnosisDivorceEnrollmentEpidemiologyEventFaceFeelingFinancial HardshipForeclosureFutureGoalsHealthHealth Care VisitHealth ProfessionalHealth systemHealthcareHomeHouseholdHousingImpulsivityIndividualInterventionLearningLifeLinkLonelinessMachine LearningMeasuresMediationMedicalMental DepressionMental HealthModelingMotivationNational Institute of Mental HealthPerformancePersonsPredictive ValuePreventionPrevention programPrivacyPropertyProxyROC CurveRecordsResearchResearch InstituteResearch PriorityRiskRisk FactorsSeveritiesSocial isolationSpecialistSuicideSuicide attemptSuicide preventionSymptomsThinkingTimeUnited StatesVeterans Health AdministrationVisitWashingtoncase controldata streamsimprovedmachine learning algorithmmembermortalityoutreach programpaymentpredictive modelingreducing suicideresidencerisk predictionrisk prediction modelsocial determinantssocial factorsstressorsuccesssuicidal morbiditysuicidal risksuicide ratetheories
项目摘要
ABSTRACT
Suicide accounted for 47,511 deaths in the United States in 2019 and the suicide rate has increased by 39% since 1999.
Suicide prevention is an NIMH research priority. Recent research in estimating machine learning algorithms to predict
suicide risk has been tremendously successful. The models have been implemented as part of routine prevention
programs in health systems such as Kaiser Permanente Washington, HealthPartners, and the Veterans Health
Administration. Despite these successes, existing models have important shortcomings. A significant proportion of
suicides followed healthcare visits where the predicted risk was low (and where an intervention might have taken place
otherwise). The models do not currently include any information about social determinants of suicide (e.g., living alone,
financial stress) or negative life events (NLE), such as divorce, bankruptcy, and criminal arrest. Adding social
determinants data and NLE data to models may improve predictive accuracy. The specific aims of this study are: (1)
expand and enhance the risk prediction dataset with over 1500 date-stamped variables describing social determinants
of suicide risk and NLE; (2) construct and evaluate suicide risk prediction models using social determinants and NLE data
alone; (3) construct and evaluate suicide risk prediction models using social determinants, NLE and healthcare data
together and estimate interaction terms between social determinants, NLE, and healthcare predictors. An example
would be “depression diagnosis” interacted with “divorce filing in last 30 days”. This will be the first large scale study to
incorporate individual-level, date-stamped measures of social determinants and NLE into machine learning suicide risk
prediction models. Upon successful completion of this study we expect to know how much incorporating these new data
contributes to the accuracy of suicide risk prediction models. This will be an important next step towards implementing
better suicide prevention programs and reducing overall suicide rates.
抽象的
自1999年以来,2019年,自杀率为47,511人死亡,自杀率增加了39%。
预防自杀是NIMH研究的重点。估计机器学习算法的最新研究以预测
自杀风险取得了巨大的成功。这些模型已作为常规预防的一部分实施
卫生系统的计划,例如Kaiser Permanente Washington,HealthPartners和退伍军人卫生
行政。尽管取得了这些成功,但现有模型仍有重要的缺点。很大一部分
自杀遵循预测风险较低的医疗访问(以及可能已经进行干预的情况下)
否则)。这些模型目前不包含有关自杀社会决定者的任何信息(例如,独自生活,
财务压力)或负面生活事件(NLE),例如离婚,破产和犯罪逮捕。增加社交
确定数据和NLE数据对模型可能提高预测精度。这项研究的具体目的是:(1)
扩展和增强风险预测数据集,其中1500多个描述社会决定者的日期戳变量
自杀风险和NLE; (2)使用社会决定者和NLE数据构建和评估自杀风险预测模型
独自的; (3)使用社会决定者,NLE和医疗保健数据构建和评估自杀风险预测模型
共同估计社会决定者,NLE和医疗保健预测指标之间的相互作用术语。一个例子
将是“抑郁诊断”与“过去30天内的离婚申请”相互作用。这将是第一个大规模研究
合并社会决定者的个人级别,日期扫描措施,并将其纳入机器学习自杀风险
预测模型。成功完成这项研究后,我们希望知道将这些新数据纳入多少
有助于自杀风险预测模型的准确性。这将是实施的重要下一步
更好的预防自杀计划并降低总体自杀率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert B. Penfold其他文献
43. Clinician Identification of Adolescents Abusing Over-the-Counter Products for Weight Control: Results From a Large Health Maintenance Organization
- DOI:
10.1016/j.jadohealth.2012.10.099 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:
- 作者:
S. Bryn Austin;Robert B. Penfold;Ron L. Johnson;Jess Haines;Sara Forman - 通讯作者:
Sara Forman
32.3 Safer Use of Antipsychotics in Youth: Successes and Lessons From the Pragmatic Trial
- DOI:
10.1016/j.jaac.2023.07.287 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Robert B. Penfold - 通讯作者:
Robert B. Penfold
Robert B. Penfold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert B. Penfold', 18)}}的其他基金
Assisted Identification and Navigation of Early Mental Health Symptoms in Children
儿童早期心理健康症状的辅助识别和导航
- 批准号:
10094734 - 财政年份:2021
- 资助金额:
$ 46.84万 - 项目类别:
Assisted Identification and Navigation of Early Mental Health Symptoms in Children
儿童早期心理健康症状的辅助识别和导航
- 批准号:
10330457 - 财政年份:2021
- 资助金额:
$ 46.84万 - 项目类别:
Assisted Identification and Navigation of Early Mental Health Symptoms in Children
儿童早期心理健康症状的辅助识别和导航
- 批准号:
10528485 - 财政年份:2021
- 资助金额:
$ 46.84万 - 项目类别:
STAR Caregivers - Virtual Training and Follow-up
STAR 护理人员 - 虚拟培训和跟进
- 批准号:
9791152 - 财政年份:2018
- 资助金额:
$ 46.84万 - 项目类别:
STAR Caregivers - Virtual Training and Follow-up
STAR 护理人员 - 虚拟培训和跟进
- 批准号:
10200658 - 财政年份:2018
- 资助金额:
$ 46.84万 - 项目类别:
相似国自然基金
公司破产司法制度改革、破产成本与资源配置效率研究
- 批准号:72272018
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
标签聚合学习视角下破产预测模型与方法研究
- 批准号:71901155
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
具有广泛相依结构的风险模型的渐近分析及其应用
- 批准号:11871289
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:面上项目
保险风险和金融风险交互作用下极端风险的建模及定量分析
- 批准号:71871046
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
保险科技影响下的基于贝叶斯网络的保费定价研究
- 批准号:71871044
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
High Traditional Masculinity and Suicide: Testing Direct, Moderation and Mediation Models
高度传统的男子气概与自杀:测试直接、调节和中介模型
- 批准号:
10581642 - 财政年份:2022
- 资助金额:
$ 46.84万 - 项目类别:
High Traditional Masculinity and Suicide: Testing Direct, Moderation and Mediation Models
高度传统的男子气概与自杀:测试直接、调节和中介模型
- 批准号:
10433110 - 财政年份:2022
- 资助金额:
$ 46.84万 - 项目类别:
Health outcomes and resilience factors associated with retention in HIV care after Hurricanes Irma and Maria in Puerto Rico
波多黎各飓风“艾尔玛”和“玛丽亚”后与保留艾滋病毒护理相关的健康结果和复原力因素
- 批准号:
9788530 - 财政年份:2018
- 资助金额:
$ 46.84万 - 项目类别:
The Effect of Socioeconomic Status on Outcome After Stroke
社会经济地位对中风后结果的影响
- 批准号:
7350901 - 财政年份:2006
- 资助金额:
$ 46.84万 - 项目类别:
The Effect of Socioeconomic Status on Outcome After Stroke
社会经济地位对中风后结果的影响
- 批准号:
7555363 - 财政年份:2006
- 资助金额:
$ 46.84万 - 项目类别: