Improving the Generalizability of Deep Neural Networks by Teaching them Lung Cancer Pathophysiology
通过教授肺癌病理生理学来提高深度神经网络的通用性
基本信息
- 批准号:10529498
- 负责人:
- 金额:$ 3.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-08-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdvisory CommitteesAge-YearsAnxietyAttentionBenignBiologicalBiological MarkersCaliberCancer DetectionCharacteristicsChronicChronic Obstructive Pulmonary DiseaseClassificationClinicalDataData SetDetectionDiagnosticEarly DiagnosisEducational process of instructingFailureFibrosisFoundationsFunctional disorderFutureGeneticGenomicsGoalsGrowthGuidelinesHealthcare SystemsHistologicImageIndividualInflammationInvestigationKnowledgeLearningLeftLungLung noduleMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMeasuresMedicalMethodologyModalityModelingMorphologyNetwork-basedNoduleNon-Small-Cell Lung CarcinomaOutcomePathogenesisPatientsPatternPerformancePhenotypePhysiologicalPlayPrecancerous ConditionsPredispositionPreventive serviceProceduresProcessPulmonary EmphysemaPulmonary InflammationQuality of lifeRecommendationResearch PersonnelRiskRisk FactorsRoleScanningSensitivity and SpecificitySmokerSmoking HistorySolidSpecific qualifier valueSpecificitySpirometryTestingTrainingTraining ProgramsUnited StatesWorkaccurate diagnosisadjudicateairway obstructionbasecancer diagnosiscareerclinically significantcomputed tomography screeningconvolutional neural networkcostdeep learningdeep neural networkdiagnostic accuracydiagnostic biomarkerdirected attentionendophenotypefollow-upgenetic varianthigh riskhistological imageidiopathic pulmonary fibrosisimaging biomarkerimprovedinsightlow dose computed tomographylung imagingmortalitynovelnovel strategiesradiologistscreeningtraittumorvector
项目摘要
PROJECT SUMMARY
Diagnostic and treatment approaches for non-small cell lung cancer (NSCLC) have evolved over the last decade
from primarily empirical methodologies to objective strategies that rely on clinical characteristics of the patient
and morphological features of the nodule. Following recommendations by the United States Preventive Service
Task Force (USPSTF), high-risk individuals are screened yearly with low-dose computed tomography (LDCT)
as this provides high sensitivity with acceptable specificity for lung cancer. However, the introduction of LDCT
as the primary screening modality for lung cancer has increased detection rates of indeterminate pulmonary
nodules that then require invasive investigation. This decreases the quality of life for at-risk individuals through
repeated follow-ups and procedures, and greatly increases anxiety over what usually turns out to a benign
nodule. In this proposal, we aim to improve upon these outcomes by determining the features that convolutional
neural networks (CNNs) utilize when classifying lung nodules as either or benign. We will also determine if
providing CNNs with pre-specified histologic image features known to be associated with lung cancer improves
their ability to generalize to novel images outside the image set used to train them. The central hypothesis of
this proposal is that increasing the attention of a CNN on LDCT image features that are accepted as
being pathophysiologically relevant will improve its generalizability to novel images and thus its ability
to accurately distinguish between malignant versus benign nodules. In the F99 Aim of this proposal, we
will address this hypothesis by utilizing LDCT images from the National Lung Screening Trial (NLST) together
with concept activation vectors to determine which parenchymal and tumor-specific features are used by CNNs
to classify lung nodules. In the K00 aim, we will determine if endophenotypes extracted from the COPDgene
LDCT image set can be used to improve CNN generalizability. Completion of these aims will lead to an increased
understanding of the morphologic biomarkers of lung cancer inherent in LDCT images of the lung that are most
important for accurate diagnosis. This will have potential application to the improvement of CNN classification
performance in other medical domains. In addition, by adhering to the training program outlined in this proposal
I will gain high levels of expertise in image biomarkers, early cancer pathogenesis and detection, genetic
networks, and genomics. These will collectively serve as a solid foundation for my future career as an
independent biomedical investigator.
项目概要
非小细胞肺癌 (NSCLC) 的诊断和治疗方法在过去十年中不断发展
从主要的经验方法到依赖于患者临床特征的客观策略
以及结节的形态特征。遵循美国预防服务局的建议
特别工作组 (USPSTF),每年使用低剂量计算机断层扫描 (LDCT) 对高危人群进行筛查
因为这为肺癌提供了高灵敏度和可接受的特异性。然而,LDCT的引入
作为肺癌的主要筛查方式,增加了不确定性肺癌的检出率
然后需要侵入性检查的结节。这降低了高危人群的生活质量
重复的随访和手术,大大增加了人们对通常结果是良性的焦虑
结核。在这个提案中,我们的目标是通过确定卷积的特征来改进这些结果。
神经网络 (CNN) 将肺结节分类为良性或良性。我们还将确定是否
为 CNN 提供已知与肺癌相关的预先指定的组织学图像特征可以改善
他们有能力推广到用于训练的图像集之外的新图像。中心假设为
这个提议是增加 CNN 对 LDCT 图像特征的关注,这些特征被认为是
病理生理学相关性将提高其对新颖图像的概括性,从而提高其能力
准确区分恶性结节和良性结节。在本提案的 F99 目标中,我们
将通过利用国家肺部筛查试验 (NLST) 的 LDCT 图像来解决这一假设
使用概念激活向量来确定 CNN 使用哪些实质和肿瘤特定特征
对肺结节进行分类。在 K00 目标中,我们将确定是否从 COPD 基因中提取内表型
LDCT图像集可用于提高CNN的泛化能力。完成这些目标将导致增加
了解肺部 LDCT 图像中固有的肺癌形态生物标志物
对于准确诊断很重要。这对于 CNN 分类的改进有潜在的应用
其他医学领域的表现。此外,通过遵守本提案中概述的培训计划
我将在图像生物标志物、早期癌症发病机制和检测、遗传
网络和基因组学。这些都将为我未来的职业生涯打下坚实的基础。
独立生物医学研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Axel Herve Masquelin其他文献
Axel Herve Masquelin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Axel Herve Masquelin', 18)}}的其他基金
Improving the Generalizability of Deep Neural Networks by Teaching Single Nucleotide Polymorphisms Associated with LDCT Features
通过教授与 LDCT 特征相关的单核苷酸多态性来提高深度神经网络的通用性
- 批准号:
10905205 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Leveraging prior knowledge to classify Indeterminate Lung Nodules in CT images using Deep Neural Networks
利用深度神经网络利用先验知识对 CT 图像中的不确定肺结节进行分类
- 批准号:
10389388 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Global Center on Climate Change and Water Energy Food Health Systems - Community Engagement Core
全球气候变化和水能源食品卫生系统中心 - 社区参与核心
- 批准号:
10835680 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Neurosurgeon Research Career Development Program (NRCDP)
神经外科医生研究职业发展计划 (NRCDP)
- 批准号:
10541698 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别: