A data-driven bioinformatics platform for the design and analysis of multiplexed antibody-based cytometry experiments in cancer research
数据驱动的生物信息学平台,用于设计和分析癌症研究中基于多重抗体的细胞计数实验
基本信息
- 批准号:10528837
- 负责人:
- 金额:$ 35.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAntibodiesAntigensAtlasesAutomated AnnotationBase CompositionBioinformaticsCell SeparationCellsCellular Indexing of Transcriptomes and Epitopes by SequencingCharacteristicsCloud ComputingCollaborationsCollectionCommunitiesComputer softwareComputing MethodologiesCost efficiencyCytometryDataData SetEcosystemEducational workshopEnsureFlow CytometryGene Expression ProfileGenesGoalsHematopoietic NeoplasmsHumanImmunohistochemistryInformaticsInformation TheoryLearningLeukocytesMalignant neoplasm of pancreasManualsMeasurementMethodsNeoplasm MetastasisOntologyPathogenesisPerformancePhenotypePopulationProcessProteinsPublishingReproducibilityResearchResearch PersonnelResolutionStandardizationStatistical ModelsTechnologyTestingTissuesTumor TissueTumor-infiltrating immune cellsWorkanticancer researchbasecancer therapycell typedesignexperimental studyfluorophorelearning algorithmleukemianeoplastic cellopen sourceoutreachpublic repositoryrelational databaserepositorysingle-cell RNA sequencingtherapy resistanttranscriptometranscriptomicstumortumor progressionweb portal
项目摘要
ABSTRACT
Tumor progression, resistance to therapy, and metastasis are closely related to the characteristics of the tumor cell ecosystem. Multiplexed antibody-based cytometry is the standard method for phenotypic characterization of tissue composition, pathogenesis, and immune infiltration with single-cell (and sometimes spatial) resolution. The identification of cell populations in these data is facilitated by algorithms that cluster cells according to their antigenic profile, as well as by predefined sets of markers that have historically evolved by trial and error. However, the annotation of these data is a manual, subjective, and laborious process that hinders the reproducibility and accuracy of the results. The design of antibody panels that include specific markers for all cell types and states present in a tissue is usually unfeasible, and the efficiency of commonly used markers is unknown. Consequently, cell clusters can differ little in their antigenic profile or contain a mixture of cell types. To overcome these limitations, this project will develop informatics technologies that leverage existing single-cell transcriptomic atlases to assist and automate the design and analyses of multiplexed antibody-based cytometry experiments. Our working hypothesis is that the vast amount of available single-cell transcriptomic data of tissues can inform the design, annotation, and analysis of cytometry experiments. We will develop and evaluate informatics technologies for establishing reference antigenic profiles and optimal antibody panels based on single-cell proteotranscriptomic data (Aim 1 ), and for automating the identification, annotation, and gating of cell populations in multiplexed antibody-based cytometry experiments (Aim 2). These new computational methods will enable any researcher to 1) automatically identify and annotate cell populations in a cytometry dataset based on reference single-cell data hosted in a repository, 2) define optimal gates for sorting cell populations, 3) transfer gates across experiments, 4) design optimal antibody panels for a given tissue or set of cell populations, and 5) infer the gene expression profile of cells. We will implement these methods in an open-source software and online portal for the transcriptome-guided annotation and analysis of cytometry data of tumors, and will closely work with end-users through several planned workshops and tutorials to maximize the utility and outreach of this platform (Aim 3). We will test our platform on leukemic and pancreatic cancer tissues profiled with spectral flow cytometry and multiplexed quantitative immunohistochemistry. The informatics technologies developed in this project will transform cancer research by boosting the phenotypic resolution, accuracy, and reproducibility of multiplexed antibody-based cytometry analyses of tumor tissues.
抽象的
肿瘤进展,对治疗的抵抗力和转移与肿瘤细胞生态系统的特征密切相关。基于多重抗体的细胞仪是通过单细胞(有时是空间)分辨率的组织组成,发病机理和免疫浸润的表型表征的标准方法。这些数据中细胞群的鉴定是由细胞根据其抗原谱的聚集算法以及通过试验和误差发展而来的预定义标记集的算法促进的。但是,这些数据的注释是一个手动,主观和费力的过程,它阻碍了结果的可重复性和准确性。通常不可行的抗体面板的设计,这些抗体面板包括针对组织中所有细胞类型和状态的特定标记,并且常用标记的效率尚不清楚。因此,细胞簇在其抗原剖面上可能有很小的不同或包含细胞类型的混合物。为了克服这些局限性,该项目将开发信息学技术,以利用现有的单细胞转录组图形图,以协助和自动化基于多重抗体的细胞术实验的设计和分析。我们的工作假设是,组织的大量可用单细胞转录数据可以为细胞术实验的设计,注释和分析提供信息。我们将开发和评估基于单细胞蛋白质转录组数据(AIM 1)的参考抗原谱和最佳抗体面板的信息技术(AIM 1),并自动化基于多路复用抗体的细胞术实验(AIM 2)中细胞种群的鉴定,注释和门控。这些新的计算方法将使任何研究人员能够从1)自动识别和注释细胞术数据集中的细胞群,该数据集基于托管在存储库中的参考单细胞数据,2)定义分类细胞种群的最佳门,3)在实验中转移门,4)4)针对细胞群体的最佳抗体范围或5)cembolations and Setter and net cember and 5)。我们将在开源软件和在线门户网站中实现这些方法,以通过几个计划的研讨会和教程与最终用户密切合作,以最大程度地与最终用户合作,以最大程度地利用该平台的实用性和外观(AIM 3)。我们将测试我们对白血病和胰腺癌组织的平台,这些平台用光流式细胞术和多重定量免疫组织化学进行了测试。该项目中开发的信息学技术将通过促进基于多重抗体的肿瘤组织细胞术分析的表型分辨率,准确性和可重复性来改变癌症研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pablo Gonzalez Camara其他文献
Pablo Gonzalez Camara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pablo Gonzalez Camara', 18)}}的其他基金
CAJAL: A computational framework for the combined morphometric, transcriptomic, and physiological analysis of cells
CAJAL:细胞形态学、转录组学和生理学综合分析的计算框架
- 批准号:
10509196 - 财政年份:2022
- 资助金额:
$ 35.94万 - 项目类别:
相似国自然基金
抗变构/单体形式的C反应蛋白关键抗原表位199-206抗体在狼疮性肾炎小管间质病变中的作用机制及其靶向治疗研究
- 批准号:82300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位疫苗新策略:抗体偶联仿生ROS纳米酶增强巨噬细胞吞噬及抗原交叉呈递效应
- 批准号:32371454
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于抗原抗体相互作用的抗体定向虚拟设计与筛选
- 批准号:32370697
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单个抗体IgG在图案化抗原阵列上运动的可视化研究
- 批准号:32301180
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
CD40-CD154共刺激信号介导的TD/TI抗原诱导罗非鱼抗体分泌细胞形成机制的比较研究
- 批准号:32303044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
- 批准号:
10708575 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别: