Developing Antivirals Targeting Proteases and Polymerases of Coronaviruses, Picornaviruses and Bunyavirales

开发针对冠状病毒、小核糖核酸病毒和布尼亚病毒的蛋白酶和聚合酶的抗病毒药物

基本信息

项目摘要

PROJECT 2: DEVELOPING ANTIVIRALS TARGETING PROTEASES AND POLYMERASES OF CORONAVIRUSES, PICORNAVIRUSES AND BUNYAVIRALES SUMMARY The goal of this Project is to develop drug-like inhibitors of coronavirus (CoV), picornavirus (PV) and Bunyavirales (BV) replication by targeting essential protease (PR) and polymerase (Pol) enzymes encoded by the viruses. Molecular targets of the CoVs being pursued are the main PR (MPro), the papain-like PR (PLP), and the RNA- dependent RNA polymerase (RdRp). Molecular targets of the PVs are the enteroviral (EV) 2A and 3C PRs and RdRp, and for BV PLP and RdRp. In Aims 1 and 2 we will identify hits and conduct lead optimization, for proteases and RdRps, respectively. Mechanism of action and resistance potential will be explored for both aims, especially for inhibitors that target novel sites. The close evolutionary relationship between CoVs and PVs may also yield broad-spectrum inhibitors and feedback between both viral targets. The team of investigators have a long and successful track record of structure-guided drug design, including extensive targeting of PRs and Pols. We have established robust, scalable expression systems for producing reagent quantities of SARS-CoV-2 viral enzymes. High-throughput, sensitive assays for measuring PR and RdRp activity have been developed for SARS-CoV-2 MPro, PLP and EV 2A and have been used to discover both covalent and noncovalent low μM inhibitors for MPro, μM inhibitors for PLP, and a biologic activator of 2A. A 100,000-compound biochemical screen against Lassa virus RdRp has yielded numerous hits and a path to structure-guided optimization. We will develop robust high-throughput (HTP) PR and RdRp assays for related CoVs, PVs, and BVs. The substrate specificity of PRs will be profiled to inform substrate and inhibitor design, while cellular perturbations these inhibitors confer will be explored by proteomics and cellular tomography to understand mechanism of action. We will use large panels of recombinant viral and host PRs and Pols to rapidly evaluate hit and lead selectivity and specificity. These efforts will be supported by the activities of the eight Technology Cores. Efforts will focus on novel chemotypes, identified using a combination of structure-based docking, diverse and multi-technique fragment screens, and HTS. Compounds will be optimized to minimize eventual resistance. Mode of binding and quantitative structure-activity relationships (QSAR) will be established using X-ray crystallography, NMR spectroscopy, cryo-electron microscopy and viral replication assays. PR inhibitors and RdRp inhibitors will be tested together to identify additive or synergistic effects. This information will be used to direct the next round of screening and inhibitor improvement. Clinically relevant mutations identified in patients treated with PR or RdRp inhibitors will be introduced into the wild-type enzymes and characterized for their sensitivity to our novel chemotypes. Emerging from this work will be a diverse array of inhibitory chemotypes and structural scaffolds to facilitate development of highly effective drugs. While ambitious, extensive preliminary success supports the pragmatism of these aims.
项目2:开发针对蛋白酶和聚合酶的抗病毒药 冠状病毒,Picornaviruses和Bunyavirales 概括 该项目的目的是开发冠状病毒(COV),Picornavirus(PV)和Bunyavirales的药物状抑制剂 (BV)通过靶向由病毒编码的必需蛋白酶(PR)和聚合酶(POL)酶复制。 所追求的COV的分子靶标是主要PR(MPRO),木瓜蛋白酶样PR(PLP)和RNA- 依赖性RNA聚合酶(RDRP)。 PV的分子靶标是肠病毒(EV)2A和3C PR和 RDRP,以及BV PLP和RDRP。在目标1和2中,我们将确定打击并进行铅优化,因为 蛋白酶和RDRP。两个目标都将探索动作机理和抵抗潜力的机理 特别是针对针对新部位的抑制剂。 COV和PV之间的密切进化关系可能 还会产生两个病毒靶标之间的广谱抑制剂和反馈。调查人员团队有一个 结构引导的药物设计的长期成功记录,包括广泛的PR和POL靶向。 我们已经建立了可实现的可扩展表达系统,用于生产大量SARS-COV-2病毒 酶。已经开发了用于测量PR和RDRP活动的高通量,敏感测定 SARS-COV-2 MPRO,PLP和EV 2A,已用于发现共价和非共价低μm MPRO的抑制剂,PLP的μM抑制剂和2A的生物激活剂。 100,000个化合物的生化 针对LASSA病毒RDRP的筛查产生了许多命中和结构引导优化的途径。我们将 为相关的COV,PVS和BVS开发强大的高通量(HTP)PR和RDRP分析。基板 PR的特异性将被介绍以告知底物和抑制剂设计,而细胞扰动这些 蛋白质组学和细胞断层扫描将探索抑制剂会议,以了解作用机理。我们 将使用大型重组病毒和宿主PR和POL的大型面板来快速评估命中和铅选择性,并且 特异性。这些努力将得到八个技术核心的活动的支持。 努力将专注于新型化学型,使用基于结构的对接,多样和 多技术片段屏幕和HTS。化合物将被优化以最大程度地减少事件电阻。 将使用X射线建立结合和定量结构活性关系(QSAR)的模式 晶体学,NMR光谱,冷冻电子显微镜和病毒复制测定法。 PR抑制剂和 RDRP抑制剂将共同测试以识别添加剂或协同作用。此信息将用于 指导下一轮筛查和抑制剂改进。 在接受PR或RDRP抑制剂治疗的患者中发现的临床相关突变将引入 野生型酶的特征是它们对我们新型化学型的敏感性。从这项工作中出现 成为抑制性化学型和结构支架的潜水员阵列,以促进高效的发展 毒品。尽管雄心勃勃,广泛的初步成功支持了这些目标的实用主义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Scott Craik其他文献

Charles Scott Craik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Scott Craik', 18)}}的其他基金

New radiotracer development to study immune cell mobilization of granzyme proteolytic activity
开发新的放射性示踪剂来研究免疫细胞动员颗粒酶蛋白水解活性
  • 批准号:
    10231735
  • 财政年份:
    2021
  • 资助金额:
    $ 516.83万
  • 项目类别:
New radiotracer development to study immune cell mobilization of granzyme proteolytic activity
开发新的放射性示踪剂来研究免疫细胞动员颗粒酶蛋白水解活性
  • 批准号:
    10395587
  • 财政年份:
    2021
  • 资助金额:
    $ 516.83万
  • 项目类别:
New radiotracer development to study immune cell mobilization of granzyme proteolytic activity
开发新的放射性示踪剂来研究免疫细胞动员颗粒酶蛋白水解活性
  • 批准号:
    10591415
  • 财政年份:
    2021
  • 资助金额:
    $ 516.83万
  • 项目类别:
Probing the Role of Chaperone-TPR Complexes in Tau Proteostasis
探讨分子伴侣-TPR 复合物在 Tau 蛋白质稳态中的作用
  • 批准号:
    10029781
  • 财政年份:
    2020
  • 资助金额:
    $ 516.83万
  • 项目类别:
Non-invasive Differentiation of Benign Lesions from Aggressive Pancreatic Cancer
良性病变与侵袭性胰腺癌的无创鉴别
  • 批准号:
    8823694
  • 财政年份:
    2015
  • 资助金额:
    $ 516.83万
  • 项目类别:
Extracellular Proteolysis as a Molecular Stratification Tool for Cancer
细胞外蛋白水解作为癌症的分子分层工具
  • 批准号:
    8829207
  • 财政年份:
    2014
  • 资助金额:
    $ 516.83万
  • 项目类别:
Antibodies for Characterizing the Structure and Function of Proteases
用于表征蛋白酶结构和功能的抗体
  • 批准号:
    8702411
  • 财政年份:
    2014
  • 资助金额:
    $ 516.83万
  • 项目类别:
Allosteric Inhibition of a Family of Proteolytic Enzymes
蛋白水解酶家族的变构抑制
  • 批准号:
    8577916
  • 财政年份:
    2013
  • 资助金额:
    $ 516.83万
  • 项目类别:
Allosteric Inhibition of a Family of Proteolytic Enzymes
蛋白水解酶家族的变构抑制
  • 批准号:
    8698774
  • 财政年份:
    2013
  • 资助金额:
    $ 516.83万
  • 项目类别:
Allosteric Inhibition of a Family of Proteolytic Enzymes
蛋白水解酶家族的变构抑制
  • 批准号:
    9039629
  • 财政年份:
    2013
  • 资助金额:
    $ 516.83万
  • 项目类别:

相似海外基金

IL-27-producing B cells in the antibody response
抗体反应中产生 IL-27 的 B 细胞
  • 批准号:
    10338194
  • 财政年份:
    2021
  • 资助金额:
    $ 516.83万
  • 项目类别:
IL-27-producing B cells in the antibody response
抗体反应中产生 IL-27 的 B 细胞
  • 批准号:
    10211938
  • 财政年份:
    2021
  • 资助金额:
    $ 516.83万
  • 项目类别:
IL-27-producing B cells in the antibody response
抗体反应中产生 IL-27 的 B 细胞
  • 批准号:
    10550179
  • 财政年份:
    2021
  • 资助金额:
    $ 516.83万
  • 项目类别:
Neutralization of primary HIV-1 viruses
中和原发性 HIV-1 病毒
  • 批准号:
    10762500
  • 财政年份:
    1994
  • 资助金额:
    $ 516.83万
  • 项目类别:
Structure and Function of Vif and APOBEC3 (A3) Proteins
Vif 和 A​​POBEC3 (A3) 蛋白的结构和功能
  • 批准号:
    10262115
  • 财政年份:
  • 资助金额:
    $ 516.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了