Development of a Machine Learning Prediction Model for the Detection of Meniere's Disease from Cerumen Chemical Profiles
开发机器学习预测模型,用于根据耵聍化学特征检测梅尼埃病
基本信息
- 批准号:10510948
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AnecdotesAppearanceCharacteristicsChemicalsChronicClinicalCollectionComplex MixturesConsumptionDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic testsDiscriminationDiseaseEarEarwaxEndolymphEtiologyFeelingHandHealthHearing TestsHigh Pressure Liquid ChromatographyIndividualKnowledgeLabyrinthLipidsLow Frequency DeafnessMachine LearningMagnetic Resonance ImagingMass FragmentographyMass Spectrum AnalysisMeniere&aposs DiseaseMethodsMolecularNauseaNeurologicNuclear Magnetic ResonancePathogenesisPatientsPreparationProcessRecurrenceReporterReportingResearchResolutionSamplingSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStatistical Data InterpretationSymptomsTechniquesTimeTinnitusVertigoVomitingWorkaccurate diagnosisbalance testingbasecostcost effectivedisease diagnosisexperiencefeature selectioninfrared spectroscopymachine learning predictionnervous system disorderpressureradiological imagingrandom forestrapid diagnosisrapid techniquetwo-dimensional
项目摘要
ABSTRACT/PROJECT SUMMARY
Ménière’s disease is a chronic, incurable vestibular disorder that produces a recurring set of symptoms as
a result of abnormally large amounts of endolymph in the inner ear. Manifestations of the disease include
recurrent episodes of vertigo, tinnitus, imbalance, nausea and/or vomiting, a feeling of fullness or pressure
in the ear, and fluctuating, progressive low-frequency hearing loss. Diagnosis is difficult because other
neurological conditions present some of the same symptoms. Thus, Ménière’s disease diagnosis, which is
challenging, imprecise, and time consuming, involves the painstaking process of excluding other diseases
with overlapping symptoms. Because it has no known chemical or radiographic markers, diagnosis is based
on the observation of a clinical compendium of symptoms, and misdiagnosis is fairly common. If chemical
markers of Ménière’s and other relevant neurological disorders could be determined, more rapid and
accurate diagnosis could be achieved based on assessment of the presence (or absence) of these relevant
compounds. It is hypothesized here that the chemical profile of cerumen can serve as a reporter of the
presence of Ménière’s disease and other neurological disorders with overlapping symptoms, and that
knowledge of these differential profiles can be leveraged to accurately and rapidly reveal the presence of
Ménière’s disease. This hypothesis will be investigated through pursuit of the following specific aims:
Specific Aim I: Collection and determination of the mass spectral chemical signatures of cerumen from
healthy donors, Ménière’s disease patients, and patients diagnosed with other neurotological disorders with
overlapping symptoms.
Specific Aim II: Development of machine learning prediction models that enable accurate determination
of the presence of Ménière’s disease and/or other neurotological disorders from cerumen chemical profiles,
and reveal the presence of the subset of compounds that are important for the ability to distinguish
Ménière’s disease samples from others.
Specific Aim III: Structural characterization of compounds revealed by the machine learning prediction
model(s) developed in Specific Aim II, to be associated with Ménière’s disease.
The results of this work will reveal whether there is a correlation between the lipid profile of earwax and
the presence of particular disease states. Structural information will be acquired on the molecules that are
responsible for the differences in healthy and Ménière’s disease patients. The information revealed would
provide the opportunity for development of a potential non-invasive method for the rapid diagnosis of
Ménière’s disease.
摘要/项目摘要
梅尼埃病是一种慢性、无法治愈的前庭疾病,会产生一系列反复出现的症状:
内耳异常大量内淋巴导致的疾病表现包括:
反复发作的眩晕、耳鸣、失衡、恶心和/或呕吐、饱腹感或压力感
由于其他原因,波动性进行性低频听力损失的诊断很困难。
神经系统疾病会出现一些相同的症状,因此,梅尼埃病的诊断是:
具有挑战性、不精确且耗时,涉及排除其他疾病的艰苦过程
由于没有已知的化学或放射学标记,因此诊断有重叠的症状。
根据临床症状概要的观察,如果化学的话,误诊是相当常见的。
可以更快、更准确地确定梅尼埃病和其他相关神经系统疾病的标志物
根据对这些相关因素的存在(或不存在)的评估,可以实现准确的诊断。
这里追求陶瓷的化学特征可以作为该化合物的报告者。
存在梅尼埃病和其他具有重叠症状的神经系统疾病,并且
可以利用这些差异概况的知识来准确、快速地揭示
梅尼埃病将通过追求以下具体目标进行研究:
具体目标 I:收集和测定陶瓷的质谱化学特征
健康捐献者、梅尼埃病患者以及诊断患有其他神经系统疾病的患者
重叠的症状。
具体目标二:开发能够准确判断的机器学习预测模型
根据耵聍化学特征判断是否存在梅尼埃病和/或其他神经系统疾病,
并揭示对于区分能力很重要的化合物子集的存在
梅尼埃病样本来自其他人。
具体目标 III:机器学习预测揭示的化合物的结构表征
在 Specific Aim II 中开发的与梅尼埃病相关的模型。
这项工作的结果将揭示耳垢的脂质谱与耳垢之间是否存在相关性。
特定疾病状态的存在将获得分子的结构信息。
造成健康和梅尼埃病患者差异的原因是所揭示的信息。
为开发一种潜在的非侵入性方法来快速诊断提供了机会
梅尼埃病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RABI A MUSAH其他文献
RABI A MUSAH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RABI A MUSAH', 18)}}的其他基金
Development of a Machine Learning Prediction Model for the Detection of Meniere's Disease from Cerumen Chemical Profiles
开发机器学习预测模型,用于根据耵聍化学特征检测梅尼埃病
- 批准号:
10645213 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Development of a Machine Learning Prediction Model for the Detection of Meniere's Disease from Cerumen Chemical Profiles
开发机器学习预测模型,用于根据耵聍化学特征检测梅尼埃病
- 批准号:
10723489 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
ENGINEERING OF NOVEL SUBSTRATE OXIDATION IN HEME ENZYMES
血红素酶中新型底物氧化的工程
- 批准号:
2391801 - 财政年份:1997
- 资助金额:
$ 23万 - 项目类别:
ENGINEERING OF NOVEL SUBSTRATE OXIDATION IN HEME ENZYMES
血红素酶中新型底物氧化的工程
- 批准号:
2172876 - 财政年份:1996
- 资助金额:
$ 23万 - 项目类别:
相似国自然基金
3D打印物体表面外貌和视觉感知色差表征方法研究
- 批准号:61775170
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
SOX10基因增强子缺失导致白来航蛋鸡羽色变异的分子机制研究
- 批准号:31672409
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
服务接触中外貌刻板印象对消费者响应的影响机制研究:基于社会距离的中介
- 批准号:71602073
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
颜料彩绘文物全外貌信息表征及再现方法研究
- 批准号:61575147
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
观察者特征与目标特征双视角下外貌社会比较的认知神经机制研究
- 批准号:31100758
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genomics and sero-epidemiology of Plasmodium falciparum malaria in a pre-elimination setting
消灭前环境中恶性疟原虫疟疾的基因组学和血清流行病学
- 批准号:
10666280 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Spatialomics and quantitative MRI of ischemic injury in a piglet model of Legg-Calve-Perthes disease
Legg-Calve-Perthes 病仔猪模型缺血性损伤的空间组学和定量 MRI
- 批准号:
10806492 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Tau protein proteolysis signaling in Alzheimer's disease
阿尔茨海默病中的 Tau 蛋白水解信号
- 批准号:
10728202 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
A functional characterization of Brugia malayi GABA-gated chloride channels: an unexplored target for antifilarial therapeutics
马来丝虫 GABA 门控氯离子通道的功能表征:抗丝虫治疗的未探索靶点
- 批准号:
10742453 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Delineating the role of let-7 microRNA on lung AT2 cell homeostasis, alveolar regeneration, and interstitial lung disease
描述let-7 microRNA对肺AT2细胞稳态、肺泡再生和间质性肺疾病的作用
- 批准号:
10634881 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别: