Targeting Postsynaptic Small G-protein Regulators
靶向突触后小 G 蛋白调节因子
基本信息
- 批准号:10512614
- 负责人:
- 金额:$ 73.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-19 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAutopsyAwardBehaviorBindingBiologicalBiological AssayBiological ProcessBiologyBrainCerebral cortexChemicalsCollaborationsCrystallographyDendritic SpinesDevelopmentDiseaseExcitatory SynapseFamilyFluorescenceFunctional disorderFundingGeneticGenetic DiseasesGoalsGuanine Nucleotide Exchange FactorsGuanosineGuanosine Triphosphate PhosphohydrolasesHippocampus (Brain)ImmunomodulatorsKnock-outKnowledgeLearningLibrariesMediatingMemoryMental disordersMolecularMonomeric GTP-Binding ProteinsNeurobiologyNeuronal PlasticityNeuronsNucleotidesPathogenesisPathologyPathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhosphotransferasesPlayProcessPropertyProteinsRattusRecombinantsRegulationResearchRoleSignal TransductionSiteSpecificitySynapsesSynaptic plasticityTestingTherapeutic InterventionTissuesToxic effectTranslatingTriageUnited States National Institutes of HealthValidationVertebral columnassay developmentbasecell typehigh throughput screeninginhibitorknock-downmemberneuronal circuitryneuropsychiatric disordernovelpostsynapticreceptorscreeningsmall moleculesmall molecule inhibitortool
项目摘要
ABSTRACT
This application aims to discover and validate small-molecule inhibitors of the Rac guanosine-nucleotide
exchange factor (GEF) kalirin, a major signal transduction hub in dendritic spines in the cerebral cortex.
Our long-term goal is to translate knowledge about dendritic spine plasticity and synaptic small GTPase
signaling, into treatments of neuropsychiatric disorders (NPDs). Dendritic spines are the sites of most
excitatory synapses in the brain, and play central roles in the development and plasticity of neuronal circuits,
and ultimately in learning, memory, and behavior. Conversely, abnormalities in dendritic spines are
extensively involved in NPD pathogenesis. Molecular pathways mediated by small GTPases such as Rac,
direct upstream activators (GEFs), and their downstream targets are major pathways that govern dendritic
spine plasticity. Furthermore, genetic and postmortem studies demonstrate a key role for these pathways
in the pathogenesis of NPDs. Kalirin is the most abundant Rac-GEF in dendritic spines in the cerebral cortex
and hippocampus, plays central roles in spine plasticity and pathology as shown by knockdown and
knockout studies, and has been implicated in NPDs by genetic, postmortem, and functional studies. Hence,
in order to study the role of kalirin in cortical plasticity and NPD pathogenesis, and of Rac-GTPase signaling
in general, here we aim to develop novel, potent, specific, inhibitors of kalirin with biological activity in
neurons. We have established a collaboration between experts in synapse biology and NPDs, high-
throughput screening and computational pharmacology, medicinal chemistry, and crystallography, and
performed extensive preliminary studies that demonstrate the validity of our hypothesis and the feasibility
of our approach. We propose the following Specific Aims: 1) Hit discovery by HTS to identify small
molecules binding to kalirin's DHPH domain and inhibiting its GEF activity. 2) Hit validation in cellular
and neuronal assays. 3) Characterization of the mechanism of action of hit compounds. 4) Medicinal
chemistry optimization of new GEF inhibitors
抽象的
该应用旨在发现并验证 Rac 鸟苷核苷酸的小分子抑制剂
交换因子(GEF)kalirin,大脑皮层树突棘的主要信号转导枢纽。
我们的长期目标是转化有关树突棘可塑性和突触小 GTPase 的知识
信号传导,进入神经精神疾病(NPD)的治疗。树突棘是大多数
大脑中的兴奋性突触,在神经元回路的发育和可塑性中发挥核心作用,
最终影响学习、记忆和行为。相反,树突棘的异常是
广泛参与 NPD 发病机制。由小 GTP 酶(例如 Rac)介导的分子途径,
直接上游激活剂(GEF),其下游靶标是控制树突的主要途径
脊柱的可塑性。此外,遗传和尸检研究证明了这些途径的关键作用
NPD 的发病机制。 Kalirin 是大脑皮层树突棘中最丰富的 Rac-GEF
和海马体,在脊柱可塑性和病理学中发挥着核心作用,如击倒和
基因敲除研究,并通过遗传、尸检和功能研究发现与 NPD 相关。因此,
为了研究 Kalirin 在皮质可塑性和 NPD 发病机制中的作用,以及 Rac-GTPase 信号传导
总的来说,我们的目标是开发具有生物活性的新型、有效、特异性的 Kalirin 抑制剂。
神经元。我们在突触生物学和 NPD 领域的专家之间建立了合作,高
通量筛选和计算药理学、药物化学和晶体学,以及
进行了广泛的初步研究,证明了我们的假设的有效性和可行性
我们的方法。我们提出以下具体目标:1)通过 HTS 进行命中发现,以识别小
分子与 kalirin 的 DHPH 结构域结合并抑制其 GEF 活性。 2) 蜂窝中的命中验证
和神经元测定。 3) 命中化合物作用机制的表征。 4) 药用
新型 GEF 抑制剂的化学优化
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHI-HAO LUAN其他文献
CHI-HAO LUAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHI-HAO LUAN', 18)}}的其他基金
Targeting Postsynaptic Small G-protein Regulators
靶向突触后小 G 蛋白调节因子
- 批准号:
10667638 - 财政年份:2022
- 资助金额:
$ 73.35万 - 项目类别:
相似海外基金
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 73.35万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10594004 - 财政年份:2022
- 资助金额:
$ 73.35万 - 项目类别:
Targeting Postsynaptic Small G-protein Regulators
靶向突触后小 G 蛋白调节因子
- 批准号:
10667638 - 财政年份:2022
- 资助金额:
$ 73.35万 - 项目类别:
Developing an NHP model for understanding the biological causes of long COVID-19 pathogenesis
开发 NHP 模型以了解 COVID-19 长期发病机制的生物学原因
- 批准号:
10404760 - 财政年份:2021
- 资助金额:
$ 73.35万 - 项目类别:
Effect of Covid-19 on chronic kidney disease progression
Covid-19 对慢性肾脏病进展的影响
- 批准号:
10341216 - 财政年份:2021
- 资助金额:
$ 73.35万 - 项目类别: