A machine learning-based screen of marine natural products to identify new leads for the treatment of Acanthamoeba eye infection
基于机器学习的海洋天然产品筛选,以确定治疗棘阿米巴眼部感染的新线索
基本信息
- 批准号:10511577
- 负责人:
- 金额:$ 23.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcanthamoebaAcanthamoeba KeratitisActinobacteria classAdverse effectsAgarAlgorithmsAmoeba genusAutomationBacteriaBiological AssayBiologyBioluminescenceBlindnessChlorhexidineClinicalCollaborationsComputersContact LensesCorneaCystDataDetectionDevelopmentDrug KineticsDrug ScreeningEmerging Communicable DiseasesEpithelial CellsEye InfectionsFailureFormulationFundingFutureGenotypeGluconatesGoalsHumanImageIn VitroIndividualInfectionKeratitisKidneyLaboratoriesLeadLeftLibrariesLiteratureLiverMachine LearningMammalian CellManualsMethodsMicrobiologyMiniaturizationModernizationMotivationNational Institute of Allergy and Infectious DiseaseNatural Product DrugNatural ProductsNatural Products ChemistryOutcomePainParasitesParasitologyPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacotherapyPhenotypePredispositionProliferatingRecurrenceResearchResearch PersonnelSamplingSpecificitySpeedStructureTechniquesTestingTissuesTrainingTraumaVisual impairmentWorkaggressive therapyantimicrobialbaseconvolutional neural networkcorneal epitheliumcytotoxicitydeep oceandrug developmentdrug discoveryeffective therapyefficacy studyexcystationexperienceimprovedin vivoinhibitorinnovationinterestmarine natural productmicrobialmicroscopic imagingneural networknovelopportunistic pathogenpolyhexamethylene biguaniderecurrent infectionresiliencescreeningskillstherapeutically effectivetherapy developmenttool
项目摘要
PROJECT SUMMARY
Painful blinding keratitis is caused by the free-living amoeba Acanthamoeba and can occur in healthy individuals
wearing contact lenses. Acanthamoeba can exist as a trophozoite or cyst and both stages are able to cause
Acanthamoeba keratitis. While effective therapies, such as chlorhexidine gluconate and polyhexamethylene
biguanide, exist to treat Acanthamoeba keratitis, the trophozoites can encyst in the ocular tissue to resist current
therapies. Infection recurrence occurs in approximately 10% of cases due to the lack of efficient drugs that can
kill both trophozoites and cysts. Therefore, discovery of therapeutics that are effective against both stages is a
critical unmet need to avert blindness. The urgency of the issue is underscored by the NIAID's listing of
acanthamoebiasis as an Emerging Infectious Disease. Current efforts to identify new anti-Acanthamoeba
compounds rely primarily upon trophocidal assays that target the trophozoite stage of the parasite. Standard
cysticidal assays are laborious and depend on manual observation of compound-treated cysts. Considering the
manual and low-throughput approaches used in the cysticidal assays, we hypothesized that any development in
automation and miniaturization could significantly increase the throughput of cysticidal drug screens to yield new
cysticidal compounds. We adapted and trained a YOLOv3 machine learning object-detection neural network to
recognize A. castellanii trophozoites and cysts in microscopy images. We utilized this trained neural network as
a tool to count excysted trophozoites in compound-treated wells to determine if a compound was cysticidal. We
validated this novel screen with literature-relevant cysticidal and non-cysticidal reference compounds by
determining their minimum cysticidal concentrations. Our machine learning-based cysticidal assay improved
throughput, demonstrated high specificity and an exquisite ability to identify non-cysticidal compounds. We
combined this cysticidal assay with our bioluminescence-based trophocidal assay to screen about 9,000
structurally unique marine microbial metabolites against A. castellanii. Our preliminary screen identified a marine
microbial metabolite that was both trophocidal and cysticidal. Based on these data, we propose to utilize our
machine learning-based high-throughput cysticidal assay to 1) screen >20,000 marine microbial natural products
against trophozoites and cysts of a reference strain, and isolate, dereplicate and assign the structures of the
active compounds, 2) evaluate susceptibility of trophozoites and cysts of a reference strain, and relevant
mammalian cells to purified compounds, and 3) confirm trophocidal and cysticidal activities of less toxic purified
compounds against multiple genotypes of Acanthamoeba. The goal of this work will be to identify 1-3 molecules
that are potent inhibitors of A. castellanii trophozoites and cysts. To successfully achieve the aims, we rely on
our collaboration that combines the unique expertise of Dr. Debnath (PI) in Acanthamoeba parasite biology and
Dr. Fenical in marine natural products drug discovery (Co-Investigator). Drs. Debnath and Fenical's expertise
and experience has potential to elevate our drug discovery platform to a translational level.
项目摘要
痛苦的盲目角膜炎是由自由活动的变形虫acanthamoeba引起的,可以在健康的个体中发生
穿着隐形眼镜。 acanthamoeba可以作为滋养体或囊肿存在,并且两个阶段都能引起
阿斯塔莫巴角膜炎。虽然有效的疗法,例如氯己定和聚己二甲基
Biguanide,存在治疗阿甘塔米巴角膜炎的存在,滋养体可以在眼组织中封装以抵抗电流
疗法。感染复发发生在大约10%的病例中,因为缺乏有效的药物
杀死滋养体和囊肿。因此,发现在两个阶段有效的治疗剂是一个
避免失明的严重未满足。该问题的紧迫性被NIAID的清单强调了
阿斯塔木病作为一种新兴的传染病。目前为识别新的反acanthamoeba的努力
化合物主要依赖于靶向寄生虫的滋养体阶段的人颗粒化测定。标准
囊性测定很费力,并取决于对化合物处理的囊肿的手动观察。考虑到
手动和低通量方法用于杀性测定法,我们假设
自动化和微型化可以显着增加杀性药筛查的吞吐量,以产生新的
囊性化合物。我们对Yolov3机器学习对象检测神经网络进行了调整和训练
在显微镜图像中识别A. castellanii滋养体和囊肿。我们利用了这个训练有素的神经网络
一种在化合物处理的井中计算脱粒的滋养体的工具,以确定化合物是否为囊性。我们
通过与文学相关的囊性和非囊化参考化合物验证了这个新颖的屏幕
确定其最小囊性浓度。我们的基于机器学习的囊性测定得到了改善
吞吐量,表现出很高的特异性和精致的识别非囊性化合物的能力。我们
将这种囊性测定与我们的生物发光的人颗粒化测定结合在一起,以筛选约9,000
在结构上独特的海洋微生物代谢产物针对曲曲霉。我们的初步屏幕确定了海军陆战队
微生物代谢产物既是颗粒质又是囊性的。基于这些数据,我们建议利用我们的
基于机器学习的高通量杀性测定1)屏幕> 20,000海洋微生物天然产品
针对参考应变的滋养体和囊肿,并分离,脱皮并分配了
活性化合物,2)评估参考菌株的滋养体和囊肿的敏感性以及相关的
哺乳动物细胞以纯化化合物,3)证实毒性较小的纯净纯化的营养和囊性活性
针对阿甘达莫巴多种基因型的化合物。这项工作的目标是识别1-3个分子
是Castellanii滋养体和囊肿的有效抑制剂。为了成功实现目标,我们依靠
我们的合作结合了Acanthamoeba寄生虫生物学和
海洋天然产品药物发现(共同评估器)的Fenical博士。博士。 Debnath和Fenical的专业知识
经验有可能将我们的药物发现平台提升到转化水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anjan Debnath其他文献
Anjan Debnath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anjan Debnath', 18)}}的其他基金
A machine learning-based screen of marine natural products to identify new leads for the treatment of Acanthamoeba eye infection
基于机器学习的海洋天然产品筛选,以确定治疗棘阿米巴眼部感染的新线索
- 批准号:
10669249 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Latrunculin B as a new drug lead for the treatment of Acanthamoeba keratitis
Latrunculin B 作为治疗棘阿米巴角膜炎的新药先导物
- 批准号:
10192287 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Latrunculin B as a new drug lead for the treatment of Acanthamoeba keratitis
Latrunculin B 作为治疗棘阿米巴角膜炎的新药先导物
- 批准号:
10391540 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
HMG-CoA Reductase Inhibitors as New Drug Leads for Naegleria Infection
HMG-CoA 还原酶抑制剂作为治疗耐格里变形虫感染的新药
- 批准号:
9979269 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
HMG-CoA Reductase Inhibitors as New Drug Leads for Naegleria Infection
HMG-CoA 还原酶抑制剂作为治疗耐格里变形虫感染的新药
- 批准号:
10088397 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
相似海外基金
A machine learning-based screen of marine natural products to identify new leads for the treatment of Acanthamoeba eye infection
基于机器学习的海洋天然产品筛选,以确定治疗棘阿米巴眼部感染的新线索
- 批准号:
10669249 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Latrunculin B as a new drug lead for the treatment of Acanthamoeba keratitis
Latrunculin B 作为治疗棘阿米巴角膜炎的新药先导物
- 批准号:
10192287 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Investigation of the pathogenic mechanisms of Acanthamoeba Keratitis
棘阿米巴角膜炎发病机制的探讨
- 批准号:
18K16938 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Latrunculin B as a new drug lead for the treatment of Acanthamoeba keratitis
Latrunculin B 作为治疗棘阿米巴角膜炎的新药先导物
- 批准号:
10391540 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别: