Metabolic control of regulatory T cell functional identity
调节性 T 细胞功能特性的代谢控制
基本信息
- 批准号:10510537
- 负责人:
- 金额:$ 60.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAddressAffectAutoimmuneAutoimmune DiseasesAutoimmunityBacteriaBindingCD4 Positive T LymphocytesCTLA4 blockadeCell physiologyCellsCellular biologyChemosensitizationCouplingCuesDataDiseaseEnteralEnvironmentEpigenetic ProcessEquilibriumEventExposure toFOXP3 geneFunctional disorderGenesGeneticGlucoseGnotobioticHistonesHyperactivityImmune responseImmune systemImmunityImmunologicsImmunotherapyIn VitroInfectionInflammationInflammatoryIntestinesLactate TransporterLactic acidLactobacillusLinkMalignant NeoplasmsMeasurementMetabolicMetabolic ControlMetabolismModelingMusNormal tissue morphologyNutrientPathologyPathway interactionsPeripheralPlayPredispositionRegulatory T-LymphocyteRoleShapesSiteSmall IntestinesSupporting CellSystemT-Cell ProliferationT-LymphocyteTissuesTumor-DerivedWorkalpha ketoglutaratecancer celldemethylationdesigndysbiosiseffector T cellepigenomeglucose metabolismgut inflammationhistone modificationimmunomodulatory therapiesin vivoin vivo Modelmetabolic profilemicrobiotamouse modelnoveltooltranscription factortumortumor microenvironmentuptake
项目摘要
PROJECT SUMMARY/ABSTRACT
Treg cells are enriched within the tissues, one of their main sites of action and possess a number of
adaptations that allow them to thrive and maintain a stable lineage identity. One of these critical features is an
altered metabolic profile. We have explored how the metabolism of various tissue environments, especially
within tumors, stabilize regulatory T cell function. Tumors produce a local metabolic environment that is toxic to
conventional, effector T cells, but regulatory T cells thrive there, being highly proliferative and maintaining
stable function. Metabolic derangement of cancer cells and the potentiation of regulatory T cell function are
linked: we have recently shown that Treg cells are supported by tumor-derived metabolites, most notably lactic
acid. Treg cells eschew glucose metabolism, upregulating genes allowing them to withstand lactic acid-rich
conditions and utilize this metabolite to fuel their function. Foxp3-restricted deletion of the lactate transporter
monocarboxylate transporter 1 (MCT1, encoded by Slc16a1), hindered Treg function within tumors, resulting in
a more immunologically active environment. Importantly, Treg cell-targeting immunotherapies like CTLA-4
blockade drives Treg cells to utilize glucose rather than lactate. Notably, this Treg utilization of glucose vs.
lactate was not limited to tumors, but also found in the peripheral tissues of mice. While deletion of MCT1
resulted in no autoimmunity at the steady state, MCT1-deficient Treg cells were unable to sufficiently control
intestinal inflammation in a T cell transfer model. Even in isolation, high glucose concentrations can hinder
Treg cell function and stability, while lactate can protect against these differentiation events. Mechanistically,
lactate broadly supports Treg cell proliferation and function, but how alternative pathways like lactate
metabolism support and drive Treg cell identity remains unclear. Treg cells are not solely programmed by
Foxp3, but rather rely on an established epigenetic landscape that supports their function, both in where Foxp3
can bind but also other key transcription factors. It now is clear that metabolic intermediates play critical roles
in epigenetic remodeling, as histones can be either directly modified by metabolites (acetylation) or modified
through metabolic processes (demethylation requiring αKG). Recently, lactate itself has been shown to directly
modify histones, although the epigenetic consequences of histone lactylation remain incompletely described.
Our preliminary data suggest that Treg cells harbor elevated lactylation of histones in an MCT1-dependent
manner, and that Treg cells with increased lactylation harbor a more stable Treg cell signature. Here we will
address the hypothesis that metabolites, most notably lactate, enriched in the tissues drive regulatory T cell
functional identity, using in vivo systems in which Treg cells are either unfavorably stabilized (cancer) or
struggle to control immunity (intestinal inflammation), coupling novel mouse models with functional and
epigenetic analyses feasible to profile these rare cells. This work will transform our understanding of how
context/tissue-specific cues like metabolites can help shape Treg cell function and fate.
项目概要/摘要
Treg 细胞在组织内富集,是其主要作用部位之一,并拥有许多
使它们能够蓬勃发展并保持稳定的血统特征的这些关键特征之一是。
我们已经探索了各种组织环境的新陈代谢如何改变。
肿瘤内部,稳定调节性 T 细胞功能,产生有毒的局部代谢环境。
传统的效应 T 细胞,但调节性 T 细胞在那里茁壮成长,具有高度增殖性和维持性
癌细胞的代谢紊乱和调节性 T 细胞功能的增强。
相关:我们最近表明 Treg 细胞受到肿瘤衍生代谢物的支持,尤其是乳酸
Treg 细胞避开葡萄糖代谢,上调基因,使其能够耐受富含乳酸的环境。
条件并利用这种代谢物来促进 Foxp3 限制性删除乳酸转运蛋白。
单羧酸转运蛋白 1(MCT1,由 Slc16a1 编码)阻碍肿瘤内的 Treg 功能,导致
重要的是,CTLA-4 等 Treg 细胞靶向免疫疗法。
阻断会促使 Treg 细胞利用葡萄糖而不是乳酸。值得注意的是,这种 Treg 细胞对葡萄糖的利用与乳酸的利用不同。
乳酸不仅限于肿瘤,在MCT1缺失的小鼠外周组织中也有发现。
导致稳态时不产生自身免疫,MCT1缺陷的Treg细胞无法充分控制
T 细胞转移模型中的肠道炎症即使在孤立情况下,高葡萄糖浓度也会阻碍。
Treg 细胞功能和稳定性,而乳酸可以从机制上防止这些分化事件。
乳酸广泛支持 Treg 细胞增殖和功能,但乳酸等替代途径如何支持 Treg 细胞增殖和功能
代谢支持和驱动 Treg 细胞的身份仍不清楚。
Foxp3,而是依赖于支持其功能的已建立的表观遗传景观,无论是在哪里 Foxp3
可以结合其他关键转录因子,现在很明显,代谢中间体发挥着关键作用。
在表观遗传重塑中,组蛋白可以直接被代谢物修饰(乙酰化)或修饰
最近,乳酸本身已被证明可以直接通过代谢过程(去甲基化需要αKG)。
修饰组蛋白,尽管组蛋白乳酰化的表观遗传后果仍未完全描述。
我们的初步数据表明,Treg 细胞在 MCT1 依赖性细胞中具有升高的组蛋白乳酰化水平。
方式,并且乳酰化增加的 Treg 细胞具有更稳定的 Treg 细胞特征。
解决了组织中富集的代谢物(尤其是乳酸)驱动调节性 T 细胞的假设
功能同一性,使用体内系统,其中 Treg 细胞要么处于不利的稳定状态(癌症),要么
努力控制免疫力(肠道炎症),将新型小鼠模型与功能性和
这项工作将改变我们对这些稀有细胞的理解。
代谢物等环境/组织特异性线索可以帮助塑造 Treg 细胞的功能和命运。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greg M. Delgoffe其他文献
Redox and detox: Malate shuttle metabolism keeps exhausted T cells fit.
氧化还原和排毒:苹果酸穿梭代谢使疲惫的 T 细胞保持健康。
- DOI:
10.1016/j.cmet.2023.11.005 - 发表时间:
2023 - 期刊:
- 影响因子:29
- 作者:
Alok Kumar;Greg M. Delgoffe - 通讯作者:
Greg M. Delgoffe
Regulatory T cell stability is maintained by a neuropilin-1 : semaphorin-4 a axis
调节性 T 细胞的稳定性由 Neuropilin-1 : semaphorin-4 a 轴维持
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Greg M. Delgoffe;Seng;Meghan E. Turnis;D. Gravano;C. Guy;Abigail E. Overacre;M. Bettini;P. Vogel;D. Finkelstein;Jody;Bonnevier;C. Workman;D. Vignali - 通讯作者:
D. Vignali
The intrinsic pro-tumorigenic role of IRF1
IRF1 的内在促肿瘤作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.4
- 作者:
Lulu Shao;W. Hou;Nicole E. Scharping;Greg M. Delgoffe;Saumendra N. Sarkar - 通讯作者:
Saumendra N. Sarkar
Altered costimulatory signals and hypoxia support chromatin landscapes limiting the functional potential of exhausted T cells in cancer
共刺激信号的改变和缺氧支持染色质景观限制了癌症中耗尽的 T 细胞的功能潜力
- DOI:
10.1101/2021.07.11.451947 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
B. R. Ford;Natalie L. Rittenhouse;Nicole E. Scharping;Paolo D. A. Vignali;A. Frisch;Ronal M. Peralta;Greg M. Delgoffe;Amanda C. Poholek - 通讯作者:
Amanda C. Poholek
670 Oxidative stress originating in the mitochondria damages telomeres sufficient to drive certain features of T cell dysfunction
第670章 起源于线粒体的氧化应激会损害端粒,足以驱动T细胞功能障碍的某些特征
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:10.9
- 作者:
Dayana B Rivadeneira;Jess Yana;Sanjana A Thosar;M. Bruchez;Patricia Lynn;Greg M. Delgoffe - 通讯作者:
Greg M. Delgoffe
Greg M. Delgoffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greg M. Delgoffe', 18)}}的其他基金
Dissecting the role of hypoxia in T cell differentiation in cancer
剖析缺氧在癌症 T 细胞分化中的作用
- 批准号:
10578000 - 财政年份:2023
- 资助金额:
$ 60.25万 - 项目类别:
Uncovering the metabolic underpinnings of T cell exhaustion
揭示 T 细胞耗竭的代谢基础
- 批准号:
10707255 - 财政年份:2022
- 资助金额:
$ 60.25万 - 项目类别:
Metabolic control of regulatory T cell functional identity
调节性 T 细胞功能特性的代谢控制
- 批准号:
10677731 - 财政年份:2022
- 资助金额:
$ 60.25万 - 项目类别:
Uncovering the metabolic underpinnings of T cell exhaustion
揭示 T 细胞耗竭的代谢基础
- 批准号:
10593593 - 财政年份:2022
- 资助金额:
$ 60.25万 - 项目类别:
Exploring and exploiting metabolic plasticity in regulatory T cells
探索和利用调节性 T 细胞的代谢可塑性
- 批准号:
9348845 - 财政年份:2017
- 资助金额:
$ 60.25万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8610875 - 财政年份:2012
- 资助金额:
$ 60.25万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8255282 - 财政年份:2012
- 资助金额:
$ 60.25万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8432601 - 财政年份:2012
- 资助金额:
$ 60.25万 - 项目类别:
Project 1: Hypoxia and metabolic dysregulation as a targetable barrier to immunotherapy in head and neck squamous cell carcinoma (HNSCC)
项目 1:缺氧和代谢失调作为头颈鳞状细胞癌 (HNSCC) 免疫治疗的目标障碍
- 批准号:
10331957 - 财政年份:2004
- 资助金额:
$ 60.25万 - 项目类别:
Project 1: Hypoxia and metabolic dysregulation as a targetable barrier to immunotherapy in head and neck squamous cell carcinoma (HNSCC)
项目 1:缺氧和代谢失调作为头颈鳞状细胞癌 (HNSCC) 免疫治疗的目标障碍
- 批准号:
10704505 - 财政年份:2004
- 资助金额:
$ 60.25万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 60.25万 - 项目类别:
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 60.25万 - 项目类别:
Metabolism and Epigenetic Regulation are Couples in Transdifferentiation and Vascular Regeneration
代谢和表观遗传调控是转分化和血管再生的结合体
- 批准号:
10905167 - 财政年份:2023
- 资助金额:
$ 60.25万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 60.25万 - 项目类别: