Identification of Cellular, Molecular and Genetic Factors Regulating RGC Regeneration

鉴定调节 RGC 再生的细胞、分子和遗传因素

基本信息

  • 批准号:
    10519102
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-12 至 2024-12-11
  • 项目状态:
    已结题

项目摘要

Project Summary Teleost fish have a natural capacity to regenerate lost retinal neurons. This is due to activation of endogenous retinal stem cells, Müller Glia (MG), that undergo reprogramming and divide asymmetrically in response to injury. In contrast, mammalian MG are reactive to retinal injury do not divide and replace lost cells in the absence of exogenous stimulation. Prior research has successfully identified factors such as Achaete-scute homolog 1 (ASCL1) and Lin-28 homologue A (LIN28A) as critical regulators of MG regenerative potential. Intriguingly, mouse MG can be stimulated to divide by inducing expression changes in ASCL1 and treatment with histone deacetylases, demonstrating that regenerative potential is intact. These studies almost exclusively induce broad retinal damage prior to investigating regenerative potential. Much less is known about how retinal regeneration is regulated following the loss of discrete cell-types that have clear disease relevance. Selective retinal ganglion cell (RGC) degeneration is implicated in several human diseases linked to vision loss. Glaucoma, one example of disease caused by optic nerve damage, is the leading causing of irreversible blindness in the world. To investigate RGC regeneration, we created a novel transgenic model enabling selective RGC ablation in zebrafish. These fish co-express a bacterial enzyme Nitroreductase (NTR) and a yellow fluorescent protein (YFP) reporter in RGCs. NTR converts prodrugs such as metronidazole (MTZ) into DNA damage inducing agents, resulting in rapid targeted ablation of RGCs. Recently, we used the NTR- prodrug ablation system to study rod photoreceptor regeneration. We identified a critical role for immune cells in rod cell regeneration and concluded a neuroprotective drug screen. Using our new model, we propose to identify novel factors regulating zebrafish RGC regeneration and compare function in regeneration-deficient mouse models. I hypothesize that large-scale discovery in zebrafish will reveal novel cellular, molecular, and/or genetic factors that regulate RGC regeneration, and that a subset of these factors will stimulate regenerative responses in mice. Such insights may lead to transformative therapeutics for RGC degeneration diseases. In addition to their regenerative competence, zebrafish are amenable to high-throughput screening (HTS), in vivo imaging, and rapid genomic manipulation. We will take advantage of these strengths by characterizing our regeneration model and determining key immune cell responders to RGC death (Aim 1), screening for drugs that enhance regeneration or protect RGCs from cell death and testing hit drugs in complementary mouse RGC degeneration models (Aim 2), and disrupting newly identified “regeneration-associated” genes for roles in RGC regeneration (Aim 3). These aims, and the comprehensive research plan behind them, are aligned with areas of emphasis articulated by the National Eye Institute (NEI): the emerging field of regeneration, the immune system’s role in visual disease, and connecting disease-associated genes to mechanisms.
项目摘要 硬骨鱼自然而然地再生视网膜神经元。 视网膜干细胞Müller神经胶质(MG),其重新编程和不对称地分裂。 相比 缺乏外源刺激。 同源物1(ASCL1)和LIN-28同源物A(LIN28A)作为MG再生潜力的关键调节剂。 有趣的是,可以通过诱导ASCL1的表达变化和处理来刺激小鼠MG分裂 使用组蛋白的deacelasses,证明再生潜力是完整的。 在研究再生潜力之前会引起广泛的视网膜损害。 在失去离散细胞类型的明确疾病相关性后,定期定期。 选择性视网膜神经节细胞(RGC)变性与几种与视觉相关的人类疾病 损失。 世界上的失明。 斑马鱼中的选择性RGC消融。 RGC中的黄色荧光蛋白(YFP)记者。 DNA损伤诱导剂,重新占用RGC的快速靶向。 研究杆光感受器再生的前瞻性消融系统。 在杆细胞再生中,结论了神经保护药物筛查。 确定调节斑马鱼RGC再生的新因素,并比较在再生缺陷中的功能 鼠标模型。 调节RGC再生的遗传因素,这些因素的子集将刺激再生 小鼠的反应。 除了它们的再生能力外,斑马鱼还适合高脚齿筛选(HTS) 体内成像和快速的基因组操作。 再生模型并确定对RGC死亡的关键免疫细胞反应(AIM 1),筛查药物 这增强了再生或保护RGC免受细胞死亡和测试击中编译小鼠中的药物 RGC变性模型(AIM 2),并破坏了新鉴定的“与再生相关”基因 RGC再生(目标3)。 由国家眼科研究所(NEI)提出的强调领域:新兴领域,Thee 免疫系统在视觉疾病中的作用,并将与疾病相关的基因与机制联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Emmerich其他文献

Kevin Emmerich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
  • 批准号:
    82300764
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
  • 批准号:
    82300182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
  • 批准号:
    82370165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
  • 批准号:
    82370175
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
  • 批准号:
    10651082
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
  • 批准号:
    10701231
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
  • 批准号:
    10719459
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
  • 批准号:
    10742569
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了