Uncovering the structural mechanisms of chromosome attachment to the mitotic spindle by SKA/HEC1
通过 SKA/HEC1 揭示染色体附着在有丝分裂纺锤体上的结构机制
基本信息
- 批准号:10507380
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAneuploidyArchitectureBindingBiochemicalCell Division ProcessCell divisionCellsCentromereChromosome SegregationChromosome abnormalityChromosomesCommunitiesComplexCongenital chromosomal diseaseCoupledCouplesCryo-electron tomographyCryoelectron MicroscopyDefectDiseaseDissectionElectron MicroscopyEnsureEnvironmentExcisionFoundationsFutureGenetic MaterialsHumanImaging TechniquesInfrastructureInvestigationIonsKinetochoresLateralLeadLightMacromolecular ComplexesMalignant NeoplasmsMediatingMentorshipMetaphase PlateMethodsMicrotubule DepolymerizationMicrotubule PolymerizationMicrotubulesMitosisMitoticMitotic spindleModelingMolecularMolecular BiologyMolecular and Cellular BiologyMutationOrganismPhaseProcessProteinsRecombinantsResearchResolutionRestRoleTechnologyTo specifyTrainingTubulinWeight-Bearing stateWorkbiochemical toolscareerchromosome movementcomputerized toolsdaughter cellexperimental studygenome integrityinnovationinsightnanometer resolutionnotch proteinpost-doctoral trainingprotein complexreconstitutionsegregationskillsthree dimensional structuretool
项目摘要
PROJECT SUMMARY/ABSTRACT
Mitosis is the process of cell division in which one cell replicates its genetic material and gives rise to two
genetically identical daughter cells. Kinetochores are large protein assemblies that connect the newly replicated
chromosomes to the mitotic spindle that constricts across the cellular volume to accomplish directional and
equivalent segregation of chromosomes to each daughter cell. In human cells, two large protein complexes
called SKA and HEC1, form the basis of connection between the centromere-bound kinetochore and the
depolymerizing microtubules that form the mitotic spindle. The proper segregation of chromosomes during cell
division is fundamental for all living organisms to maintain genome integrity, and mutations to this process have
shown critically important to disease and cancer.
My proposal combines innovative cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET)
methods and molecular biology tools to define the architecture of the human kinetochore and molecular basis
for attachment to the mitotic spindle. During the K99/R00 period I will,
1) Determine a high-resolution molecular view of the SKA-microtubule complex to provide insight into how SKA
oligomerizes and binds microtubules to ensure kinetochore attachment at the mitotic spindle
2) Visualize the role of the HEC1 complex in coordinating with SKA to mediate “end-on” kinetochore attachments
to the microtubule ends that accomplish directional chromosome segregation
3) Provide mechanistic insight to the complete architecture of segregating kinetochore-chromosome complexes
directly inside human cells undergoing mitosis
During my postdoctoral period at MIT, I obtained training in cryo-electron microscopy (cryo-EM), cryo-electron
tomography (cryo-ET), and cryo-focused ion beam (cryo-FIB) technologies to provide structural insights into
macromolecular complexes directly inside cells. During my postdoctoral training in the Nogales lab, I have begun
to refine my skills in cryo-EM and cryo-ET, with specific training to biochemically prepare and analyze microtubule
assemblies. During my K99/R00 phase, I will undertake further training in cryo-EM and cryo-ET, as well as
cellular and molecular biology tools to study critical processes during mitosis. I am confident my training in cryo-
EM coupled with the excellent mentorship of Eva Nogales, Sue Biggins, and the rest of my advisory team, will
help me transition to an independent research career. I believe my access to top notch scientific infrastructure
and a truly collaborative scientific community at UC Berkeley makes it the ideal environment for my K99/R00
training. During my R00 phase, I will provide insight into the molecular mechanisms governing chromosome
attachment, segregation, and disassembly at the mitotic spindle. I envision developing a cross-disciplinary
research group utilizing electron microscopy, biochemistry, and computational tools to tackle these difficult
problems, and to understand how defects in these mechanisms lead to chromosomal disorders and cancer.
项目摘要/摘要
有丝分裂是细胞分裂的过程,其中一个细胞复制其遗传物质并产生两种
属于属的子细胞。动力学是连接新复制的大蛋白质组件
染色体到有丝分裂纺锤体,该纺锤体在整个细胞体积上收缩以完成方向性和
染色体与每个子细胞的等效分离。在人类细胞中,两个大蛋白质复合物
称为SKA和HEC1,构成了Centromere结合的动物学和
形成有丝分裂主轴的去聚合微管。细胞期间染色体的适当分离
分裂对于所有生物体维持基因组完整性都是基础,并且对此过程的突变具有
对疾病和癌症至关重要。
我的建议结合了创新的低温电子显微镜(Cryo-EM)和冷冻电子层析成像(Cryo-ET)
方法和分子生物学工具来定义人类动物学和分子基础的结构
用于附着有丝分裂主轴。在K99/R00期间,我将
1)确定SKA-Microtube复合物的高分辨率分子视图,以洞悉SKA
寡聚并结合微管,以确保在有丝分裂主轴上附着的动力学附着
2)可视化Hec1复合物在与SKA协调中的作用,以介导“终端”动力学附件
到达到方向性染色体分离的微管末端
3)提供机械洞察,以隔离隔离动型染色体复合体的完整体系结构
直接发生有丝分裂的人类细胞内
在MIT的博士后期间,我获得了低温电子显微镜(Cryo-EM),Cryo-Electron的培训
断层扫描(冷冻-ET)和以低温为中心的离子束(冷冻FIB)技术,以提供结构性见解
大分子复合物直接在细胞内部。在Nogales实验室的博士后培训期间,我已经开始
为了完善我在Cryo-EM和Cryo-ET方面的技能,并通过特定的培训以生化准备和分析微管
集会。在我的K99/R00阶段,我将在Cryo-EM和Cryo-Et以及
细胞和分子生物学工具,用于研究有丝分裂过程中的关键过程。我相信我在冷冻方面的培训
Em加上Eva Nogales,Sue Biggins和我的其他咨询团队的出色精神
帮助我过渡到独立的研究职业。我相信我可以进入顶级科学基础设施
加州大学伯克利分校的真正合作科学界使其成为我的K99/R00的理想环境
训练。在我的R00阶段,我将洞悉有关染色体的分子机制
有丝分裂主轴的附着,分离和拆卸。我设想开发跨学科
利用电子显微镜,生物化学和计算工具来解决这些困难的研究小组
问题,并了解这些机制的缺陷如何导致染色体疾病和癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony P Schuller其他文献
Anthony P Schuller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
皮层下母源复合体SCMC维持卵子基因组完整性的机制及在卵子老化过程中的作用
- 批准号:31801240
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
PLK1和Aurora-A的SUMO化修饰对年龄相关卵母细胞非整倍性的作用机制研究
- 批准号:31860329
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
老龄化卵子非整倍性产生的精确分子机制
- 批准号:81601274
- 批准年份:2016
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
水稻非整倍性基因组表达与表观遗传调控特征研究
- 批准号:31571266
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
诱导染色体不稳定与非整倍性的Ska1蛋白影响前列腺癌发生与发展的机制研究
- 批准号:81302235
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Exploiting markers of genomic instability in high-risk pre-invasive ovarian cancer
利用高风险浸润前卵巢癌基因组不稳定性标记
- 批准号:
10719535 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
The Role of Chromosome Y in Human Microglia and Neurodevelopment
Y 染色体在人类小胶质细胞和神经发育中的作用
- 批准号:
10680304 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
- 批准号:
10626283 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Characterizing the role of tumor suppressor phase separation and chromatin organization in maintaining genomic integrity
表征肿瘤抑制相分离和染色质组织在维持基因组完整性中的作用
- 批准号:
10723739 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别: