Structural and Functional Studies on Proton-activated Chloride (PAC) Channel
质子激活氯离子 (PAC) 通道的结构和功能研究
基本信息
- 批准号:10507346
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidosisAcidsAdoptedAnionsAntibodiesAntibody FormationArchitectureAwardBenzoic AcidsBindingBinding SitesBiochemicalBrainBrain InjuriesCell DeathCell LineCellsCerebrumCessation of lifeChloride ChannelsChloridesComputing MethodologiesCryoelectron MicroscopyDevelopmentDiseaseElectrophysiology (science)Extracellular DomainFoundationsFutureGenesGoalsHumanImmunizeInjuryInstitutesInterventionInvestigationIonsIschemic StrokeKnowledgeLinkLipidsMediatingMembrane ProteinsMentorsMetabolicMolecularMolecular ConformationMonoclonal AntibodiesMouse ProteinMusMutationNeuronsNiflumic AcidOrthologous GeneOutcomePathologicPathologic ProcessesPathway interactionsPatientsPharmacologic SubstancePharmacologyPhasePhysiologicalPlayPost-Translational Protein ProcessingPostdoctoral FellowProbabilityProceduresPropertyProteinsProtonsRNA SplicingRecombinantsResearchResearch PersonnelRestRoleServicesSeveritiesSolidStructureSupervisionSwellingSystemTechniquesTherapeuticTimeTissuesTitrationsToxic effectTrainingUnited StatesVariantWorkbasechannel blockersdesigndisabilityeffective therapyexperimental studyextracellularimprovedinhibitorinsightmutantnanodiskneurotoxicitynovelparticlepatch clamppregnenolone sulfateprotein purificationprotein structureresponsescreeningsensorsmall moleculestoichiometrytreatment strategyvoltage
项目摘要
ABSTRACT
Ischemic stroke is one of the leading causes of disability and death in the United States. Acid accumulation in
the brain during ischemic stroke causes neurotoxicity and irreversible tissue damage. Understanding the
factors that contribute to acid-induced cell death during ischemic stroke is thus critical to define the
pathological process and develop effective treatment strategies. The proton-activated chloride (PAC) channel
(also known as ASOR or PAORAC) is a recently discovered cellular pH-sensor that plays a critical role in
determining the outcome of brain damage after ischemic stroke. Under acidic conditions, the activation of PAC
allows an influx of chloride current into the neuron which further causes cell swelling and death. In 2019, the
PAC gene was cloned by two independent groups and was found to be a novel chloride channel. In 2020, I
revealed the first near-atomic cryo-EM structures of the human PAC channel at two different conformational
states, including an apo state and a proton-bound non-conducting state. Our study provided a wealth of
information about channel stoichiometry, domain architecture, and anion selectivity mechanisms of PAC. While
promising progress has been made towards understanding the function of this channel, a complete picture of
how PAC responds to environmental acidification is still obscure due to the limited knowledge about the pH-
sensor and the lack of an open state structure. Likewise, although the PAC current is sensitive to several non-
specific chloride channel blockers, their inhibition mechanisms are unexplored. The long-term objective of this
research is to unveil the molecular principles underlying PAC channel function in both physiological and
pathological conditions, and to develop specific compounds that could be used to mitigate the effect of
ischemic stroke in patients. In this K99/R00 proposal, will carry out a comprehensive structural and functional
investigation of PAC by revealing its pH-sensing residues and the associated structural mechanisms (Aim 1). I
will also explore strategies to obtain an open state structure of PAC and provide detailed mechanistic
knowledge about its voltage-dependent gating mechanisms (Aim 2). I will also study the PAC channel in its
native state by purifying endogenous PAC protein from mouse brain (Aim 3). Lastly, I will investigate small
molecule-mediated inhibition mechanisms through combined structural and functional approaches (Aim 4).
The mentored phase of the award will be conducted at Van Andel Institute under the supervision of Dr. Juan
Du. During this time, I will receive additional training in membrane protein structure determination, patch-clamp
electrophysiology experiments, and endogenous protein purification techniques. These components are not
only essential for the completion of the research but will also prepare me to become an independent
investigator in the near future.
抽象的
缺血性中风是美国残疾和死亡的主要原因之一。酸积聚于
缺血性中风期间的大脑会导致神经毒性和不可逆的组织损伤。了解
因此,在缺血性中风期间导致酸诱导细胞死亡的因素对于定义缺血性中风期间的酸诱导细胞死亡至关重要。
病理过程并制定有效的治疗策略。质子激活氯离子 (PAC) 通道
(也称为 ASOR 或 PAORAC)是最近发现的一种细胞 pH 传感器,在
确定缺血性中风后脑损伤的结果。在酸性条件下,PAC的活化
允许氯电流流入神经元,进一步导致细胞肿胀和死亡。 2019年,
PAC基因由两个独立的小组克隆,并被发现是一种新型的氯离子通道。 2020年,我
揭示了人类 PAC 通道在两种不同构象下的第一个近原子冷冻电镜结构
态,包括apo态和质子束缚非导电态。我们的研究提供了丰富的
有关 PAC 的通道化学计量、域结构和阴离子选择性机制的信息。尽管
在了解该通道的功能方面已经取得了可喜的进展,全面了解了
由于对 pH 值的了解有限,PAC 如何应对环境酸化仍不清楚。
传感器和缺乏开放状态结构。同样,虽然 PAC 电流对几种非敏感
特定的氯离子通道阻滞剂,其抑制机制尚未探索。本次活动的长远目标
研究旨在揭示 PAC 通道功能在生理和心理方面的分子原理
病理条件,并开发可用于减轻影响的特定化合物
缺血性中风患者。在本次K99/R00提案中,将进行全面的结构和功能
通过揭示 PAC 的 pH 感应残基和相关的结构机制来研究 PAC(目标 1)。我
还将探索获得 PAC 开放状态结构的策略,并提供详细的机制
关于其电压依赖性门控机制的知识(目标 2)。我还将研究 PAC 渠道
通过从小鼠大脑中纯化内源性 PAC 蛋白来达到天然状态(目标 3)。最后我会调查一些小事
通过结构和功能相结合的方法实现分子介导的抑制机制(目标 4)。
该奖项的指导阶段将在胡安博士的监督下在范安德尔研究所进行
杜。在此期间,我将接受膜蛋白结构测定、膜片钳等方面的额外培训
电生理学实验和内源性蛋白质纯化技术。这些组件不是
不仅对于完成研究至关重要,而且也让我为成为一名独立的人做好准备
调查员在不久的将来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Ruan其他文献
Zheng Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng Ruan', 18)}}的其他基金
Structural and Functional Studies on Proton-activated Chloride (PAC) Channel
质子激活氯离子 (PAC) 通道的结构和功能研究
- 批准号:
10681494 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
相似国自然基金
清补通络方丹酚酸B通过激活TLR-4通路促进急性期布鲁氏菌感染宿主体内巨噬细胞M1极化的机制研究
- 批准号:82360867
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
产酸拟杆菌通过代谢产物N-乙酰血清素激活IDO1-AhR信号介导Treg-巨噬细胞轴减轻脓毒症肝损伤的作用及机制
- 批准号:82330067
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
尿素循环来源的延胡索酸通过调控心脏成纤维细胞线粒体ATP生成减轻心梗后纤维化的作用及机制
- 批准号:82370240
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
假基因来源的lncRNA PTTG3P通过NAT10催化的ac4C修饰参与脂肪酸去饱和调控胃癌进展的机制研究
- 批准号:82302935
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Orthogonal split luciferases for imaging multiplexed cellular behaviors
用于多重细胞行为成像的正交分裂荧光素酶
- 批准号:
10730660 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Translational Regulation of SARS-CoV-2 in response to viral S protein-induced signaling
SARS-CoV-2 响应病毒 S 蛋白诱导信号传导的翻译调控
- 批准号:
10721101 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
- 批准号:
10567849 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Microbiome targeted nutrition to improve immune function during critical illness
微生物组靶向营养可改善危重疾病期间的免疫功能
- 批准号:
10751673 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别: