Role of RAGE in amyloid-induced pancreatic islet dysfunction in diabetes
RAGE 在淀粉样蛋白诱导的糖尿病胰岛功能障碍中的作用
基本信息
- 批准号:10506592
- 负责人:
- 金额:$ 15.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlpha CellAlzheimer&aposs DiseaseAmyloidAmyloid depositionApoptosisBehaviorBeta CellBindingBioinformaticsBiologyBlood VesselsCell Culture TechniquesCell physiologyCellsCellular biologyCessation of lifeCollaborationsComplexData ScienceDepositionDevelopmental BiologyDiabetes MellitusDiseaseEnvironmentEtiologyFunctional disorderGene ExpressionGene Expression ProfileGenetic TranscriptionGlucagonHealthHumanHyperglycemiaImaging TechniquesImmunoglobulinsImmunologyImpairmentIn VitroIndividualInflammationInflammatoryInsulinInsulin ResistanceInternationalIslet CellIslets of LangerhansKnockout MiceLinkMeasurementMeasuresMediatingMembraneMentorsMentorshipMethodsModelingMolecularMonitorMusNational Institute of Diabetes and Digestive and Kidney DiseasesNon-Insulin-Dependent Diabetes MellitusNuclearNuclear RNAOrganismOxidative StressPathogenesisPattern recognition receptorPersonsPhysiciansPhysiologyPreventiveProcessReagentReceptor ActivationReportingResearch TrainingRodentRodent ModelRoleScientistSignal PathwaySignal TransductionStructureTechniquesTestingTherapeuticTimeTissuesToxic effectTrainingTransgenic MiceTransgenic OrganismsTransplantationUnited StatesViralamylin receptoramyloid formationanterior chambercell typecollaborative environmentendoplasmic reticulum stresseye chambergenetic manipulationhuman diseasehuman tissuein vivoin vivo Modelinnovationinsulin secretionintravital imagingisletislet amyloid polypeptideknock-downmembernovelnovel strategiespancreatic juicepreventreceptor bindingreceptor for advanced glycation endproductssmall hairpin RNAtranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY / ABSTRACT
In type 2 diabetes (T2D), amyloid deposits composed of islet amyloid polypeptide (IAPP) are found within
pancreatic islets. T2D islets also have impaired insulin secretion from β cells, dysregulated glucagon secretion
from α cells, increased inflammation, and alterations in vasculature. Among multiple potential mechanisms
linking amyloid deposition and islet dysfunction, the receptor for advanced glycation endproducts (RAGE) was
recently shown to bind IAPP oligomers and mediate β cell toxicity in vitro, which results were also supported
using a transgenic rodent model. But in vitro cell culture models, while valuable, do not fully replicate the
complex environmental, intercellular, or temporal changes in living organisms. Furthermore, human and rodent
islets differ in function, structure, cellular composition, and gene expression. Thus, to fully understand the
pathogenesis of human disease, one must study these processes in human cells and tissues in the in
vivo context. Such studies have been limited by the inability to obtain and manipulate these relatively
inaccessible human tissues and by the lack of in vivo models in which to study them longitudinally. It therefore
remains unknown if endogenously secreted IAPP oligomers act on the RAGE receptor in primary human β
cells, if such signaling occurs in α cells, and what effect IAPP-RAGE signaling in specific cell types has on islet
function. I hypothesize that IAPP oligomer-induced activation of RAGE receptors on β and α cells impairs
human islet function and health in vitro and in vivo. To test my hypothesis using human islets, I will employ
four novel techniques and reagents. 1) Our recently reported pseudoislet method will enable efficient genetic
manipulation of specific islet cell types prior to reaggregation into functional cell clusters. 2) New intravital
imaging techniques will allow longitudinal monitoring of amyloid formation in human pseudoislets transplanted
into the mouse anterior chamber of the eye. 3) Transplantation of pseudoislets into a recently developed
glucagon knockout mouse will permit accurate measurement of human glucagon secretion in vivo. 4)
Application of single nuclear RNA sequencing approaches will permit assessment of transcriptional effects on
specific cell types in transplanted pseudoislets. In Aim 1, I will test the hypothesis that RAGE mediates IAPP
oligomer-induced β cell dysfunction in human islets in vitro and in vivo. In Aim 2, I will test the hypothesis that
IAPP-RAGE signaling in ⍺ cells causes dysregulated glucagon secretion in human islets in vitro and in vivo.
Completion of these aims will elucidate key mechanisms responsible for pathogenesis of T2D, opening
avenues for study into new preventive and therapeutic approaches. I will benefit from the outstanding
environment, collaboration, and mentorship at the Vanderbilt Diabetes Research and Training Center as I
transition to independence as a physician-scientist.
项目摘要 /摘要
在2型糖尿病(T2D)中,在淀粉样蛋白酶多肽(IAPP)组成的淀粉样蛋白沉积物中被发现
胰岛。 T2D胰岛也从β细胞中受损的胰岛素分泌受损,胰高血糖素分泌失调
从α细胞,感染增加和脉管系统的改变。在多种潜在机制中
连接淀粉样蛋白沉积和胰岛功能障碍,高级糖基化终产物(愤怒)的接收器为
最近显示的结合IAPP低聚物并在体外介导β细胞的毒性,结果也得到了支持
使用转基因啮齿动物模型。但是,体外细胞培养模型虽然有价值,但并不能完全复制
复杂的环境,细胞间或生物体的暂时变化。此外,人类和啮齿动物
功能,结构,细胞组成和基因表达的胰岛不同。那是为了充分理解
人类疾病的发病机理,必须研究人类细胞和组织中的这些过程
体内上下文。这种研究受到了无法获得和操纵相对的限制
无法接近的人体组织以及由于缺乏体内模型来纵向研究它们。因此
尚不清楚内源性分泌的IAPP低聚物在原代人β中作用于愤怒受体
细胞,如果这种信号在α细胞中发生,并且特定细胞类型中的IAPP-RAGE信号传导对胰岛有什么影响
功能。我假设IAPP低聚物诱导的β和α细胞上的愤怒受体激活
人类胰岛功能和体外和体内健康。为了使用人类胰岛检验我的假设,我将采用
四种新型技术和试剂。 1)我们最近报道的伪书方法将实现有效的通用
在重新聚集成功能性细胞簇之前对特定胰岛细胞类型的操纵。 2)新的插入术
成像技术将允许在移植的人伪符中对淀粉样蛋白形成的纵向监测
进入小鼠眼前的小鼠。 3)将伪书移植到最近开发的
胰高血糖敲除小鼠将允许在体内准确测量人胰高血糖素的分泌。 4)
单个核RNA测序方法的应用将允许评估转录对
移植伪符中的特定细胞类型。在AIM 1中,我将测试愤怒介导IAPP的假设
人胰岛在体外和体内的低聚物诱导的β细胞功能障碍。在AIM 2中,我将检验以下假设
⍺细胞中的IAPP-RAGE信号传导导致人类胰岛在体外和体内的分泌失调。
这些目标的完成将阐明负责T2D发病机理的关键机制
研究新的预防和治疗方法的途径。我将从杰出的
我在范德比尔特糖尿病研究与培训中心的环境,协作和心态
过渡到独立为身体科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan James Wright其他文献
Jordan James Wright的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan James Wright', 18)}}的其他基金
In vivo mechanisms of amyloid-induced pancreatic islet dysfunction in type 2 diabetes
淀粉样蛋白诱导的 2 型糖尿病胰岛功能障碍的体内机制
- 批准号:
10588374 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Rescued Secretion of Misfolded Mutant Proinsulin
拯救错误折叠的突变胰岛素原的分泌
- 批准号:
8312064 - 财政年份:2012
- 资助金额:
$ 15.99万 - 项目类别:
Rescued Secretion of Misfolded Mutant Proinsulin
拯救错误折叠的突变胰岛素原的分泌
- 批准号:
8458637 - 财政年份:2012
- 资助金额:
$ 15.99万 - 项目类别:
相似国自然基金
Galectin-3调控PD-L1在原发性肝细胞癌免疫治疗和预后中的作用及机制
- 批准号:82304216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经母细胞瘤EDF1促进神经节苷脂贮积诱导CD8+T细胞耗竭的机制研究
- 批准号:82373421
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肝细胞CREG1抑制其富含miR-34的外泌体分泌并减少巨噬细胞的活化,进而延缓肝纤维化的进展
- 批准号:82300713
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
- 批准号:
10744556 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别: