Defining the circuit, synaptic, and molecular mechanisms linking intracellular Ca2+ release to learning using subcellularly-targeted manipulations and imaging techniques in dendrites in vivo
使用体内树突的亚细胞靶向操作和成像技术定义连接细胞内 Ca2 释放与学习的电路、突触和分子机制
基本信息
- 批准号:10502363
- 负责人:
- 金额:$ 13.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAlzheimer&aposs DiseaseAnimalsApicalAreaAutomobile DrivingBRAIN initiativeBehaviorBehavioralBiophysicsBrainCalciumCellsColorCommunitiesConsultationsDendritesDevelopment PlansElectroporationEndoplasmic ReticulumEnvironmentEquipmentFire - disastersFoundationsGlutamatesGoalsHeadHippocampus (Brain)ImageImaging TechniquesIn VitroInstitutesInterventionInvestigationKnowledgeLaboratoriesLearningLightLinkLiteratureLogicMemoryMentorshipMissionMolecularMolecular GeneticsMonitorMorphologyMusNeurodegenerative DisordersNeuronal PlasticityNeuronsNeurosciencesOutputParkinson DiseasePathway interactionsPatternPharmacologyPlayPrevalenceReporterReportingResearchResearch ActivityResource DevelopmentRoleShapesSupervisionSynapsesSynaptic plasticityTestingWorkautism spectrum disorderawakebasecareer developmentcellular imagingexperienceexperimental studygain of functionhippocampal pyramidal neuronimaging approachimprovedin vivoinnovationinsightnervous system disorderneuronal cell bodynoveloptogeneticsplace fieldspost-doctoral trainingpostsynapticpresynapticreceptive fieldrelating to nervous systemspatiotemporalsubcellular targetingtooltwo-photonvirtual environmentvirtual realityway finding
项目摘要
Project Summary/Abstract
Candidate Goals and Mission Relevance: The applicant’s broad, long-term objective is to investigate how high-
(circuit/behavioral) and low- (subcellular/molecular) level organizational principles of the brain cooperate to drive
learning. The proposed research activities will build a foundation for this long-term goal and, in so doing, will
promote BRAIN 2025 Report goals by integrating new technological and conceptual approaches to causally link
intracellular Ca2+ release (ICR) from endoplasmic reticulum (ER) to neural activity dynamics and behavior.
Project description: Dendritic Ca2+ is central to neural plasticity mechanisms allowing animals to adapt to the
environment. ICR has long been thought to shape these mechanisms. The applicant recently carried out the first
investigation of ICR in mammalian neurons in vivo to uncover how this subcellular phenomenon shapes
experience-dependent feature selectivity across the dendritic arbor of pyramidal neurons (PNs) in mouse
hippocampal area CA1. This work raises important questions regarding when, where, and how ICR is engaged
to support learning. The applicant will address these questions in the following Aims:
Aim 1. Characterize plasticity-associated ER Ca2+ dynamics in dendrites in vivo (K99): To achieve this
Aim, the applicant will perform simultaneous dual-color, dual-plane in vivo 2-photon imaging of cytosolic and ER-
resident Ca2+ in dendrites of single CA1 PNs during head-fixed spatial navigation of novel virtual environments.
Aim 2. Define the synaptic logic tying intracellular Ca2+ release to in vivo synaptic plasticity (K99/R00):
The applicant will first create a novel molecular tool to optogenetically induce ICR (Aim 2.1; K99). The applicant
will then combine this precise interventional tool with single-cell imaging, inducible blockade of presynaptic
release, and optogenetic dampening of ICR to dissect the synaptic logic by which ICR participates in plasticity
induction in behaving mice. (Aim 2.2; R00).
Aim 3. Dissect excitatory circuit-molecular mechanisms driving intracellular Ca2+ release in vivo (R00):
The candidate will optogenetically activate specific excitatory projections onto distinct dendritic compartments of
single CA1PNs while monitoring ER Ca2+ dynamics in behaving mice. Local pharmacological manipulations will
dissect contributions of the two canonical pathways that convert presynaptic excitatory input to postsynaptic ICR.
Career development plan: The applicant will extend a highly complementary Co-Mentorship arrangement
between Drs. Franck Polleux and Attila Losonczy who possess deep expertise in cellular/molecular/genetic and
in vivo/behavioral approaches, respectively. The applicant will receive robust consultative support from Dr.
Stefano Fusi of Columbia’s Center for Theoretical Neuroscience and Dr. Darcy Peterka, Director of Cellular
Imaging at Columbia’s Zuckerman Institute. The applicant’s research and transition to independence will benefit
from this strong mentorship team, state-of-the-art facilities, all necessary equipment, and numerous Professional
Development resources offered through the Columbia Office of Postdoctoral Affairs, the Zuckerman Institute,
and the BRAIN Initiative.
项目概要/摘要
候选人目标和使命相关性:申请人的广泛、长期目标是调查
大脑的(电路/行为)和低(亚细胞/分子)水平组织原则合作驱动
拟议的研究活动将为这一长期目标奠定基础,并以此为基础。
通过整合新技术和概念方法来建立因果关系,促进 BRAIN 2025 报告目标
细胞内 Ca2+ 释放(ICR)从内质网(ER)到神经活动动力学和行为。
项目描述:树突状 Ca2+ 是神经可塑性机制的核心,使动物能够适应
长期以来,ICR 一直被认为可以塑造这些机制。
对哺乳动物神经元体内 ICR 的研究,揭示这种亚细胞现象是如何形成的
小鼠锥体神经元(PN)树突轴上的经验依赖性特征选择性
这项工作提出了有关 ICR 何时、何地以及如何参与的重要问题。
为了支持学习,申请人将在以下目标中解决这些问题:
目标 1. 表征体内树突中与可塑性相关的 ER Ca2+ 动力学 (K99):为了实现这一目标
目标是,申请人将对细胞质和 ER- 进行同步双色、双平面体内 2 光子成像。
在新型虚拟环境的头部固定空间导航过程中,单个 CA1 PN 的树突中存在驻留的 Ca2+。
目标 2. 定义将细胞内 Ca2+ 释放与体内突触可塑性联系起来的突触逻辑 (K99/R00):
申请人将首先创建一种新颖的分子工具来光遗传学诱导ICR(目标2.1;K99)。
然后将这种精确的介入工具与单细胞成像、突触前诱导阻断相结合
ICR 的释放和光遗传学抑制,以剖析 ICR 参与可塑性的突触逻辑
对行为小鼠进行诱导(目标 2.2;R00)。
目标 3. 剖析体内驱动细胞内 Ca2+ 释放的兴奋性回路分子机制 (R00):
候选人将通过光遗传学激活特定的兴奋性投射到不同的树突区室上
单个 CA1PNs,同时监测行为小鼠的 ER Ca2+ 动态 局部药理操作将。
剖析将突触前兴奋性输入转化为突触后 ICR 的两种典型途径的贡献。
职业发展计划:申请人将提供高度互补的共同导师安排
Franck Polleux 博士和 Attila Losonczy 博士在细胞/分子/遗传和
申请人将分别获得体内/行为方法的强有力的咨询支持。
哥伦比亚理论神经科学中心的 Stefano Fusi 和细胞主任 Darcy Peterka 博士
哥伦比亚大学祖克曼研究所的成像将使申请人的研究和向独立的过渡受益。
来自这个强大的指导团队、最先进的设施、所有必要的设备以及众多的专业人士
通过哥伦比亚博士后事务办公室、祖克曼研究所提供的发展资源,
和大脑计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin O'Hare其他文献
Justin O'Hare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin O'Hare', 18)}}的其他基金
Defining the Circuit, Synaptic, and Molecular Mechanisms Linking Intracellular Ca2+ Release to Learning Using Subcellularly-Targeted Manipulations and Imaging Techniques in Dendrites in Vivo
使用体内树突的亚细胞靶向操作和成像技术定义将细胞内 Ca2 释放与学习联系起来的电路、突触和分子机制
- 批准号:
10665009 - 财政年份:2022
- 资助金额:
$ 13.62万 - 项目类别:
Causally linking dendritic Ca2+ dynamics to CA1 circuit function and spatial learning using novel tools to precisely manipulate an endogenous Ca2+ buffering process
使用新工具将树突 Ca2 动力学与 CA1 电路功能和空间学习因果联系起来,以精确操纵内源 Ca2 缓冲过程
- 批准号:
9788758 - 财政年份:2018
- 资助金额:
$ 13.62万 - 项目类别:
Causally linking dendritic Ca2+ dynamics to CA1 circuit function and spatial learning using novel tools to precisely manipulate an endogenous Ca2+ buffering process
使用新工具将树突 Ca2 动力学与 CA1 电路功能和空间学习因果联系起来,以精确操纵内源 Ca2 缓冲过程
- 批准号:
10006851 - 财政年份:2018
- 资助金额:
$ 13.62万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Alpha-Synuclein aberrantly modifies the nanoscale distribution and function of ion channels to promote neuronal cytotoxicity
α-突触核蛋白异常地改变离子通道的纳米级分布和功能以促进神经元细胞毒性
- 批准号:
10635208 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Mechanism and restoration of altered firing in interneurons during early phase Alzheimer's Disease
阿尔茨海默病早期中间神经元放电改变的机制和恢复
- 批准号:
10537621 - 财政年份:2022
- 资助金额:
$ 13.62万 - 项目类别:
Automated cell-type-specific electrophysiology for understanding circuit dysregulation in Alzheimer's Disease
自动化细胞类型特异性电生理学用于了解阿尔茨海默氏病的电路失调
- 批准号:
10525870 - 财政年份:2022
- 资助金额:
$ 13.62万 - 项目类别: