Dissecting the role of gut microbial-derived metabolites on epilepsy
剖析肠道微生物代谢物对癫痫的作用
基本信息
- 批准号:10502915
- 负责人:
- 金额:$ 39.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAdultAffectAgreementAntiepileptic AgentsBacteriaBlood - brain barrier anatomyBrainC57BL/6 MouseCellsCellular MembraneChronicDataDefectDevelopmentDrug resistanceElectroencephalographyElectrophysiology (science)EpilepsyFrequenciesGeneticHippocampus (Brain)HomeostasisInfectionInflammationInjectionsKainic AcidKnowledgeLinkLiquid ChromatographyMass Spectrum AnalysisMetabolicModelingMolecularMusNervous System PhysiologyNeuraxisNeuronal DysfunctionNeuronsOutcomePatientsPhasePhenotypePhysiologicalPhysiologyPlasmaPlayPredispositionPrevalenceProcessProductionProteinsPublishingResearchResistanceResource-limited settingRisk FactorsRodentRoleSamplingSeizuresSignal PathwaySupplementationSynapsesSynaptic TransmissionTMEVTaxonomyTemporal LobeTemporal Lobe EpilepsyTest ResultTestingTherapeuticTherapeutic InterventionTimeViralVirus DiseasesWorkacquired epilepsyastrogliosisdaidzeindesigndietaryequolgut bacteriagut microbesgut microbiomegut microbiotagut-brain axisinnovationlarge-conductance calcium-activated potassium channelsmicrobialmicrobiomemicrobiome analysismicroorganismmortalityneglectnervous system disorderneuronal excitabilityneuroprotectionnovelnovel strategiespatch clampsynaptic functiontandem mass spectrometrytargeted treatmenttherapeutic targettranscriptome sequencingvoltage
项目摘要
Project Summary
Epilepsy is a common neurological disorder, with a worldwide prevalence of over 65 million. There is general
agreement that epilepsy is caused by hyperexcitable neuronal networks and most therapeutic strategies have
focused on decreasing excitation by targeting neuronal synaptic proteins. Even with the available antiepileptic
drugs, there is still no cure and 30% of patients are resistant to treatment. Historically, epilepsy has been viewed
as driven solely by defects in brain processes; however, this brain-centric perspective neglects the fact that the
function of the nervous system is affected by the metabolic state of the body. Current research recognizes that
microorganisms influence the brain by modifying metabolic factors in the gut, the “gut-brain axis.” Most of the
evidence thus far is correlative showing that changes in the gut microbiota can affect seizure outcomes.
However, there is a gap in knowledge regarding specific mechanisms by which gut microbes contribute to seizure
development that may offer novel approaches to treat epilepsy. Viral infection-induced epilepsy is the most
common cause of epilepsy worldwide and is often difficult to model in rodents due to high mortality rates.
However, the Theiler's murine encephalomyelitis virus (TMEV) is a low-mortality viral-induced model of temporal
lobe epilepsy. Intracranial TMEV injection leads to hippocampal neuronal dysfunction, widespread cortical
astrogliosis, and seizure-genesis peaking at 6 days post infection in ~50% of adult C57BL/6 mice. While central
nervous system inflammation has been posited as a potential modulator of seizure phenotype development in
TMEV infection, the molecular mechanism is unclear. Data obtained from this model surprisingly indicated that
the majority of taxonomies underrepresented in TMEV-infected mice with seizure phenotypes contained genera
associated with the production of the bacterial metabolite S-equol. These bacteria convert dietary daidzein into
S-equol, which has been shown to activate large conductance Ca2+- and voltage-activated K+ (BK) channels.
Activation of BK channels play an important role in controlling neuronal excitability and therefore represents a
novel target for the treatment of epilepsy. This proposal will determine if depletion of the microbial-derived
metabolite, S-equol, increase seizure occurrence in TMEV-injected mice. It further tests the hypothesis that S-
equol-producing microbial species confer neuroprotection against seizure susceptibility and neuronal
hyperexcitability following TMEV injection via activation of BK channels. This hypothesis will be tested using a
combination of EEG and electrophysiology recordings, mass spectrometry and 16S RNA sequencing. To
determine whether these findings are broadly applicable to other types of epilepsy we will examine three models
of epilepsy, TMEV, kainic acid and a genetic epilepsy model. This work takes a critical step causally linking
specific microbial shifts to neuronal excitability, seizures and epilepsy and will identify microbial metabolites that
can be targeted for therapeutic intervention.
项目概要
癫痫是一种常见的神经系统疾病,全球患病率超过 6500 万。
一致认为癫痫是由神经网络过度兴奋引起的,并且大多数治疗策略都已
即使使用现有的抗癫痫药,也专注于通过靶向神经元突触蛋白来减少兴奋。
癫痫病目前还没有治愈药物,30%的患者对治疗有抵抗力。
然而,这种以大脑为中心的观点仅仅由大脑过程的缺陷驱动;
目前的研究认识到,神经系统的功能受到身体代谢状态的影响。
微生物通过改变肠道(“肠脑轴”)中的代谢因素来影响大脑。
迄今为止的相关证据表明,肠道微生物群的变化会影响癫痫发作的结果。
然而,对于肠道微生物导致癫痫发作的具体机制的了解还存在差距。
可能为治疗病毒感染引起的癫痫提供新方法的开发是最重要的。
全世界癫痫的常见原因,由于死亡率高,通常很难在啮齿类动物中建立模型。
然而,泰勒氏鼠脑脊髓炎病毒 (TMEV) 是一种低死亡率的病毒诱导模型
颅内 TMEV 注射导致海马神经元功能障碍,广泛的皮质。
大约 50% 的成年 C57BL/6 小鼠中,星形胶质细胞增生和癫痫发作在感染后 6 天达到峰值。
神经系统炎症已被认为是癫痫表型发展的潜在调节剂
TMEV 感染的分子机制尚不清楚,从该模型获得的数据令人惊讶地表明。
大多数分类学在具有癫痫表型的 TMEV 感染小鼠中代表性不足,其中包含属
与细菌代谢物 S-牛尿酚的产生有关。这些细菌将膳食中的黄豆苷元转化为大豆黄酮。
S-牛尿酚,已被证明可以激活大电导 Ca2+- 和电压激活的 K+ (BK) 通道。
BK 通道的激活在控制神经兴奋性方面发挥着重要作用,因此代表了
该提案将确定是否消除微生物来源的新靶标。
代谢物 S-牛尿酚会增加注射 TMEV 的小鼠癫痫发作的发生率,这进一步验证了 S- 的假设。
产生雌马酚的微生物物种赋予神经保护作用,防止癫痫易感性和神经元
通过激活 BK 通道注射 TMEV 后的过度兴奋性将使用
结合脑电图和电生理学记录、质谱分析和 16S RNA 测序。
为了确定这些发现是否广泛适用于其他类型的癫痫,我们将检查三种模型
这项工作在因果关系上迈出了关键的一步。
特定微生物对神经元兴奋性、癫痫发作和癫痫的转变,并将识别微生物代谢物
可以作为治疗干预的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Latoya Campbell其他文献
Susan Latoya Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Latoya Campbell', 18)}}的其他基金
Dissecting the role of gut microbial-derived metabolites on epilepsy
剖析肠道微生物代谢物对癫痫的作用
- 批准号:
10901461 - 财政年份:2022
- 资助金额:
$ 39.07万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
- 批准号:
10740796 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
FGF13 Control of Hippocampal Excitability in Cocaine Contextual Memory
FGF13 对可卡因情境记忆中海马兴奋性的控制
- 批准号:
10595518 - 财政年份:2022
- 资助金额:
$ 39.07万 - 项目类别:
The Role of End-Binding Protein 2 and Microtubule Network in Inherited Cardiac Arrhythmias
末端结合蛋白 2 和微管网络在遗传性心律失常中的作用
- 批准号:
10351800 - 财政年份:2022
- 资助金额:
$ 39.07万 - 项目类别: