Molecular mechanisms underlying the assembly of the human proteasome and endogenous protein complexes
人类蛋白酶体和内源蛋白复合物组装的分子机制
基本信息
- 批准号:10500937
- 负责人:
- 金额:$ 48.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBiochemicalBiologicalBiological ModelsBiological ProcessCell LineCell ProliferationCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexCryoelectron MicroscopyDiseaseElectron MicroscopyEligibility DeterminationEnvironmentEpithelial CellsFRAP1 geneGenesGoalsHealthHematopoieticHumanImmunodeficiency and CancerIn VitroInsectaLightLysosomesMacromolecular ComplexesMammalian CellMass Spectrum AnalysisMembrane ProteinsMetabolic PathwayMethodological StudiesMethodologyMethodsMolecularMolecular ChaperonesMolecular MachinesNerve DegenerationNucleic AcidsPathway interactionsPreparationProductionProteinsRibonucleoproteinsSamplingSignal TransductionSystemTechniquesWorkbiological systemscell growthcell typecryogenicsdetection of nutrientfightinginsightinterestmacromolecular assemblymacromoleculemulticatalytic endopeptidase complexnovel therapeuticsoverexpressionparticleprotein complexprotein degradationprotein functionprotein purificationstructural biology
项目摘要
Project Summary
Advances in structural biology techniques including single particle cryogenic electron microscopy (cryo-EM)
have enabled unprecedented molecular insights into the function of biological macromolecules. However, the
study of many proteins and ribonucleoprotein complexes remains challenging due to current limitations in
sample preparation approaches. Traditionally, proteins of interest are produced in over-expression systems
within bacterial, insect, and mammalian cell lines. While this approach can allow the production and purification
of proteins with high yields, it often requires substantial optimization that can limit the study of biomedically
important membrane proteins and large protein complexes, especially where specific chaperones and cellular
conditions are required that are difficult to replicate in vitro. To overcome these limitations, we are developing
methodology to efficiently tag and purify endogenous proteins by leveraging advances in CRISPR/Cas gene
editing. This approach enables us to investigate macromolecular complexes and their intricate assembly
pathways under native and context-specific conditions that are relevant to human health and disease. We are
interested in developing and applying the approach in three major areas of study: constitutive protein
complexes, cell-type specific macromolecular assemblies, and cell state dependent membrane protein
complexes. Using the proteasome as a model system, we will investigate the assembly pathway of
proteasomal complexes by cryo-EM and mass spectrometry. This work will provide mechanistic insights into
critical protein degradation machinery and help to establish important methodology for the study of
endogenous protein assemblies. Next, we will expand our approach to the study of protein complexes in
different cell types, including hematopoietic and epithelial cells. This goal will be achieved by developing
efficient strategies to optimize CRISPR/Cas gene editing in specialized cell types, which will constitute an
important step towards the study of proteins in their native states. Finally, we will examine the conditional
assembly of protein complexes and membrane protein assemblies. For this direction, we will investigate
proteins involved in nutrient sensing at the lysosome in conjunction with mTOR signaling. This work will
provide molecular insights into the mechanisms regulating key metabolic pathways and shed light on how
mTOR integrates different signals to promote cell growth and proliferation. Additionally, we will establish
protocols for screening cellular and biochemical conditions to acquire context-specific protein assemblies.
Altogether, these studies will provide mechanistic insights into remarkable molecular machines and develop
important methodology that can be applied to the study of other biological systems. These methods will enable
us to unravel the molecular mechanisms underlying the function of proteins in specific cellular environments
and help advance structural biology towards understanding how biological macromolecules work in their native
contexts.
项目摘要
结构生物学技术的进步,包括单个颗粒低温电子显微镜(Cryo-EM)
已经实现了对生物大分子功能的前所未有的分子见解。但是,
由于目前的局限性,许多蛋白质和核糖核蛋白复合物的研究仍然具有挑
样品准备方法。传统上,感兴趣的蛋白质是在过表达系统中生产的
在细菌,昆虫和哺乳动物细胞系中。虽然这种方法可以允许生产和净化
产量高的蛋白质,通常需要实质性优化,以限制生物医学研究的研究
重要的膜蛋白和大蛋白质复合物,尤其是在特定的伴侣和细胞的情况下
需要在体外复制难以复制的条件。为了克服这些限制,我们正在发展
通过利用CRISPR/CAS基因的进步来有效标记和纯化内源性蛋白质的方法论
编辑。这种方法使我们能够研究大分子复合物及其复杂的组装
与人类健康和疾病相关的本地和上下文特异性条件下的途径。我们是
有兴趣在三个主要研究领域开发和应用该方法:构成蛋白
复合物,细胞类型的特异性大分子组件和细胞状态依赖性膜蛋白
复合物。使用蛋白酶体作为模型系统,我们将研究的组装途径
冷冻EM和质谱法的蛋白酶体复合物。这项工作将提供机械洞察力
关键蛋白质降解机制,并有助于建立重要的方法来研究
内源性蛋白质组件。接下来,我们将扩展我们在研究蛋白质复合物的方法
不同的细胞类型,包括造血细胞和上皮细胞。这一目标将通过开发实现
在专门细胞类型中优化CRISPR/CAS基因编辑的有效策略,这将构成一种
迈向研究蛋白质的重要步骤。最后,我们将检查条件
蛋白质复合物和膜蛋白组装的组装。对于这个方向,我们将调查
与MTOR信号传导结合的溶酶体中养分传感的蛋白质。这项工作将
提供有关调节关键代谢途径的机制的分子见解,并阐明了如何
MTOR整合了不同的信号以促进细胞的生长和增殖。此外,我们将建立
筛选细胞和生化条件的方案,以获取上下文特异性蛋白质组件。
总的来说,这些研究将提供机械洞察力,以对出色的分子机器进行发展并发展
可以应用于其他生物系统的重要方法。这些方法将启用
我们要揭示蛋白质在特定细胞环境中蛋白质功能的基础机制
并有助于推进结构生物学,以了解生物大分子如何在其本地中起作用
上下文。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianhua Zhao其他文献
Jianhua Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianhua Zhao', 18)}}的其他基金
Molecular mechanisms underlying the assembly of the human proteasome and endogenous protein complexes
人类蛋白酶体和内源蛋白复合物组装的分子机制
- 批准号:
10670424 - 财政年份:2022
- 资助金额:
$ 48.75万 - 项目类别:
相似国自然基金
藻类微生物燃料电池CO2藻菌协同生化转化及阴极原位耦合光催化捕获
- 批准号:52306222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SPION与BMP-2磁生化信号耦合靶向新生骨精准改善成骨微环境的研究
- 批准号:82370930
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
耦合生物物理与生化地球化学过程的土地覆被变化多尺度气候效应研究
- 批准号:42371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
入核效应蛋白SidW的生化及生物学功能
- 批准号:32370196
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Targeting Myosin to Treat Polycystic Kidney Disease
靶向肌球蛋白治疗多囊肾
- 批准号:
10699859 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Programming of Epigenetic Clocks and Biomarkers from Early-life Arsenic Exposure
生命早期砷暴露的表观遗传时钟和生物标志物的编程
- 批准号:
10726009 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
lncRNA Function and Mechanisms during Cardiac Development and Disease
心脏发育和疾病过程中lncRNA的功能和机制
- 批准号:
10608600 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Repetitive Stretch-Induced Myocardial Stiffening in Chronic Coronary Artery Disease
慢性冠状动脉疾病中反复牵拉引起的心肌硬化
- 批准号:
10588929 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别: