Mechanisms involved in podocyte damage in Alport Syndrome
阿尔波特综合征足细胞损伤的机制
基本信息
- 批准号:10503338
- 负责人:
- 金额:$ 69.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmniotic FluidBindingBiologyCell CycleCell Cycle ProgressionCell Cycle StageCell SurvivalCell physiologyCellsChronic Kidney FailureDataDepositionDeteriorationDevelopmentDisease ProgressionEnd stage renal failureEndothelial CellsEtiologyEvaluationEventExperimental ModelsFluorescenceFoundationsFunctional disorderGenesGoalsHereditary nephritisHumanIn VitroInjuryInjury to KidneyIntegrin alphaVbeta3KidneyKidney DiseasesKnowledgeLeadMaintenanceMethodsMicellesModelingMolecularMorphologyMusPathway interactionsPatientsPhaseRegulationRenal functionRenal glomerular diseaseResearchRoleSchemeSeriesSignal TransductionStructureSystemTechnologyTestingTherapeuticTherapeutic AgentsTherapeutic EffectTransgenic OrganismsUbiquitinationUp-RegulationVascular Endothelial Growth FactorsWT1 geneWorkbasecell injurydelivery vehicledesignglomerular basement membraneglomerular endotheliumglomerular filtrationglomerular functionin vivoinhibitorinhibitor therapyinnovationinsightknock-downmouse modelnanoparticlenovelnovel therapeuticsosteopontinpeptide amphiphilespodocytepreventprogenitorprogramsrepairedstandard of caretargeted deliverytherapeutic target
项目摘要
During the progression of most chronic kidney diseases (CKD) podocytes are lost, and injury to glomerular
endothelial cells, and changes in the composition of the glomerular basement membrane (GBM) lead to
alterations of the structure and function of the glomerular filtration barrier. Understanding the mechanisms
that induce glomerular cell damage could possibly pave the way to the discovery of new pathways that
can be targeted to slow kidney disease progression or possibly reverse it.
Data presented in this proposal, using the glomerulus on a chip platform and the FUCCI mouse model that allows
tracking of the cell cycle changes in vivo, show that podocytes present an altered binding to their GBM, they exit
their quiescent state, and are lost during disease progression in Alport Syndrome (AS) mice, our model of CKD
characterized by a defective GBM. We have evidence that miR-193a is upregulated specifically in mouse and
human AS podocytes and that its inhibition favors podocyte survival and modulate podocyte interactions with
their GBM. Based on our data, we hypothesize that re-establishing glomerular function by modulating
important molecular pathways that are responsible for podocyte survival prevents further injury, thus
slowing kidney disease progression.
Using multiple transgenic AS FUCCI mice and in vitro human systems, we will study the molecular mechanisms
that regulate the podocyte cell cycle and their interaction with a defective GBM, typical of AS. Specifically, in Aim
1 we will study in vitro how modulation of miR-193a can “re-program” cellular signaling networks that influence
podocyte biology. In Aim 2 we will perform in vivo studies to determine the therapeutic effect of miR-193a inhibitor
delivered as cargo of an innovative delivery vehicle based on peptide amphiphile micelle nanoparticles
specifically designed to target podocytes in our AS colonies. Successful completion of this proposal will provide
novel insights into key factors critical for maintenance of glomerular structure and function. Importantly, this
knowledge would likely be applicable to other forms of CKD and possibly facilitate the discovery of new
therapeutic agents tailored specifically to sustain podocyte survival and minimize glomerular damage.
在大多数慢性肾脏疾病(CKD)足细胞的进展过程中,肾小球受伤
内皮细胞,以及肾小球基底仪(GBM)组成的变化导致
肾小球滤过屏障的结构和功能的改变。
诱导肾小球细胞损伤可能会付出的可能性,以发现发现的新途径
可以针对肾脏疾病进展缓慢或可能将其逆转。
在本提案中介绍的数据,使用芯片平台上的glomerulus和fucci Mousel的数据
体内周期变化的跟踪,表明足细胞对其GBM的结合发生了变化,它们退出
它们的静态状态,在疾病进展过程中丢失了Alport综合征(AS)小鼠,我们的CKD模型
以Decective GBM为特征。
人作为足细胞,这是抑制剂有利于足细胞的生存和模块化相互作用
他们的GBM。
负责足细胞存活的重要分子途径可防止进一步的损伤
放缓肾脏疾病的进展。
使用多个转基因作为Fucci小鼠和体外人类系统,我们将研究分子机制
调节足细胞周期及其与典型AS的缺陷GBM的相互作用。
1我们将在体外研究miR-193a的调节如何可以影响影响的细胞信号网络
AIM 2中的Podocyte生物学。我们将进行体内研究
作为基于肽两亲的胶束纳米颗粒的货运动物的货物交付
专门针对我们的殖民地的目标。
对维持肾小球结构和功能的关键因素的新颖洞察力
知识可能
专门为维持足细胞存活而量身定制的治疗剂,并最大程度地减少肾小球损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefano Da Sacco其他文献
Stefano Da Sacco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefano Da Sacco', 18)}}的其他基金
Mechanisms involved in podocyte damage in Alport Syndrome
阿尔波特综合征足细胞损伤的机制
- 批准号:
10677742 - 财政年份:2022
- 资助金额:
$ 69.74万 - 项目类别:
Novel mechanisms of glomerular injury in primary membranous nephropathy
原发性膜性肾病肾小球损伤的新机制
- 批准号:
10618308 - 财政年份:2020
- 资助金额:
$ 69.74万 - 项目类别:
Novel mechanisms of glomerular injury in primary membranous nephropathy
原发性膜性肾病肾小球损伤的新机制
- 批准号:
10176476 - 财政年份:2020
- 资助金额:
$ 69.74万 - 项目类别:
Novel mechanisms of glomerular injury in primary membranous nephropathy
原发性膜性肾病肾小球损伤的新机制
- 批准号:
10433930 - 财政年份:2020
- 资助金额:
$ 69.74万 - 项目类别:
相似国自然基金
羊水间充质干细胞增殖新基因Abca4及其下游调控分子在优化干细胞体外扩增与治疗方面应用的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
妊娠糖尿病母体羊水和母乳低聚糖组成对后代发育及远期健康的影响及其机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
未足月胎膜早破患者羊水来源的外泌体对羊膜上皮细胞的功能调控及作用机制研究
- 批准号:82001585
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
以羊水为媒介的“母婴信息传递”在调控成年心肌细胞增殖中的作用和机制研究
- 批准号:81930008
- 批准年份:2019
- 资助金额:297 万元
- 项目类别:重点项目
羊水外泌体miR-146a调控羊膜上皮细胞间质转化影响胎膜早破的分子机制
- 批准号:81801463
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bacterial CRISPR interference to define macrophage responses to group B Streptococcus proteins
细菌 CRISPR 干扰定义巨噬细胞对 B 族链球菌蛋白的反应
- 批准号:
10724607 - 财政年份:2023
- 资助金额:
$ 69.74万 - 项目类别:
Metabolic modulation of Fusobacterium nucleatum virulence
具核梭杆菌毒力的代谢调节
- 批准号:
10681729 - 财政年份:2023
- 资助金额:
$ 69.74万 - 项目类别:
Investigation of urinary extracellular vesicles as novel and safe therapeutics for autosomal recessive polycystic kidney disease
尿细胞外囊泡作为常染色体隐性遗传性多囊肾病的新型安全疗法的研究
- 批准号:
10750704 - 财政年份:2023
- 资助金额:
$ 69.74万 - 项目类别:
Mechanisms involved in podocyte damage in Alport Syndrome
阿尔波特综合征足细胞损伤的机制
- 批准号:
10677742 - 财政年份:2022
- 资助金额:
$ 69.74万 - 项目类别:
Prune Belly Syndrome: Mechanisms of Filamin A Mutations
李子腹综合症:Filamin A 突变机制
- 批准号:
10675735 - 财政年份:2022
- 资助金额:
$ 69.74万 - 项目类别: