Regulation mechanisms of Trypanosoma brucei axonemal dynein
布氏锥虫轴丝动力蛋白的调控机制
基本信息
- 批准号:10494466
- 负责人:
- 金额:$ 26.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAffectAfrican TrypanosomiasisBacterial InfectionsBehaviorBiochemicalBiochemistryBiologicalBiological AssayBiophysicsCRISPR/Cas technologyCell divisionCellsCenters of Research ExcellenceChagas DiseaseChemicalsChronicCiliaCloningDataDevelopmentDiseaseDrug TargetingDrug resistanceDynein ATPaseElementsEnzymesEukaryotaExhibitsFlagellaFluorescence MicroscopyFrequenciesGenomicsGoalsIn VitroLeadLeishmaniasisLife Cycle StagesLightMalignant NeoplasmsMeasuresMicrotubulesModelingModificationMolecularMolecular MotorsMorphogenesisMotorMovementOutcomeParasitesPathogenicityPersonsPhenotypePost-Translational Protein ProcessingProcessPropertyProteinsProteomicsRegulationResearchStructureTestingTissuesTotal Internal Reflection FluorescentTrypanosomaTrypanosoma brucei bruceiTrypanosomiasisTubulinVirulencearmbasebiophysical modelbiophysical propertiescell motilityforce feedbackinnovationinsightlaser tweezermechanical signalneglected tropical diseasesnoveloptical trapspathogenprogramsreconstitutionsingle moleculetherapeutic targettranscriptome sequencingtransmission processvector
项目摘要
Project Summary/Abstract
Motility is critical to the life cycle and pathogenicity of many parasites. While targeting motility is successful in
the treatment of multiple bacterial diseases, the motility and motile structures of eukaryotic pathogens remain
understudied and underexploited as treatment targets. Kinetoplastids, which are eukaryotic parasites that cause
multiple neglected tropical diseases, exhibit unique flagellar motility. Their flagella beat with a bending wave that
propagates from the tip to the base of their flagellum. This is unlike nearly all other eukaryotes, which beat from
the base to the tip. Because kinetoplastid flagellum bending wave propagation direction switches under certain
chemical and environmental conditions, and because the motile elements of kinetoplastid the flagellum are
nearly identical to all other eukaryotes, it is likely that unique regulation mechanisms innate to axonemal dyneins,
the molecular motors that drive flagellar motility, tune this tip-to-base motility. Testing this hypothesis requires
quantitative single-molecule biophysical characterization of kinetoplastid dynein regulation mechanisms.
The broad goal of this research program is to enable the development of novel treatments for kinetoplastid-
associated diseases that target the tip-to-base motility of kinetoplastid flagella. The specific aims of this project
focus on quantifying axonemal dynein regulation mechanisms from Trypanosoma brucei brucei, which will be
used as a model for kinetoplastid flagella. The aims include characterizing how force regulates the motility of
inner arm axonemal dyneins and how dynein-associated light chains and posttranslational modification to tubulin
regulate outer arm axonemal dyneins. This interdisciplinary project will take molecular biological (CRISPR/Cas9,
cloning, protein tagging), biochemical (in vitro reconstitutions, ATPase assays), genomic and proteomic (RNA-
Seq, mass spec), and biophysical (ultrafast dual-trap optical tweezers, total internal reflectance fluorescence
microscopy) experimental approaches. The collected data will be integrated and understood by making
quantitative biophysical models of axonemal dynein motility mechanisms. The expected outcome will be a
framework from which to develop pan-kinetoplastid drugs that target parasite motility. Successful completion of
the project will ultimately lead to a greater understanding of the fundamental mechanisms of pathogenic parasite
motility and could lead to novel treatments for African sleeping sickness, Chagas disease, and leishmaniasis.
项目概要/摘要
运动性对于许多寄生虫的生命周期和致病性至关重要。虽然靶向运动是成功的
治疗多种细菌性疾病,保留真核病原体的运动性和运动结构
作为治疗目标尚未得到充分研究和利用。动质体,是一种真核寄生虫,可引起
多种被忽视的热带疾病,表现出独特的鞭毛运动。它们的鞭毛以弯曲的波的形式跳动
从鞭毛的尖端传播到鞭毛的基部。这与几乎所有其他真核生物不同,它们从
基部到尖端。由于动质体鞭毛弯曲波传播方向在一定条件下发生切换
化学和环境条件,并且由于动质体鞭毛的运动元素是
与所有其他真核生物几乎相同,轴丝动力蛋白可能具有固有的独特调节机制,
驱动鞭毛运动的分子马达,调节这种尖端到基底的运动。检验这个假设需要
动质体动力蛋白调节机制的定量单分子生物物理表征。
该研究计划的总体目标是开发动质体的新疗法
以动质体鞭毛的尖端到基部运动为目标的相关疾病。该项目的具体目标
重点是量化布氏锥虫的轴丝动力蛋白调节机制,这将是
用作动质体鞭毛的模型。目标包括描述力如何调节物体的运动性
内臂轴丝动力蛋白以及动力蛋白相关轻链和微管蛋白的翻译后修饰如何
调节外臂轴丝动力蛋白。这个跨学科项目将采用分子生物学(CRISPR/Cas9、
克隆、蛋白质标签)、生物化学(体外重组、ATP 酶测定)、基因组和蛋白质组学(RNA-
Seq、质谱)和生物物理(超快双阱光镊、全内反射荧光
显微镜)实验方法。收集到的数据将通过以下方式进行整合和理解:
轴丝动力蛋白运动机制的定量生物物理模型。预期结果将是
开发针对寄生虫运动的泛动质体药物的框架。顺利完成
该项目最终将导致人们对致病寄生虫的基本机制有更深入的了解
运动性,并可能导致非洲昏睡病、恰加斯病和利什曼病的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Alper其他文献
Joshua Alper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Defining the mechanisms of kinetoplast DNA assembly by trypanosomal topoisomerase II for therapeutic target development
定义锥虫拓扑异构酶 II 的动质体 DNA 组装机制,用于治疗靶点开发
- 批准号:
10386849 - 财政年份:2021
- 资助金额:
$ 26.12万 - 项目类别: