Regulation mechanisms of Trypanosoma brucei axonemal dynein
布氏锥虫轴丝动力蛋白的调控机制
基本信息
- 批准号:10494466
- 负责人:
- 金额:$ 26.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAffectAfrican TrypanosomiasisBacterial InfectionsBehaviorBiochemicalBiochemistryBiologicalBiological AssayBiophysicsCRISPR/Cas technologyCell divisionCellsCenters of Research ExcellenceChagas DiseaseChemicalsChronicCiliaCloningDataDevelopmentDiseaseDrug TargetingDrug resistanceDynein ATPaseElementsEnzymesEukaryotaExhibitsFlagellaFluorescence MicroscopyFrequenciesGenomicsGoalsIn VitroLeadLeishmaniasisLife Cycle StagesLightMalignant NeoplasmsMeasuresMicrotubulesModelingModificationMolecularMolecular MotorsMorphogenesisMotorMovementOutcomeParasitesPathogenicityPersonsPhenotypePost-Translational Protein ProcessingProcessPropertyProteinsProteomicsRegulationResearchStructureTestingTissuesTotal Internal Reflection FluorescentTrypanosomaTrypanosoma brucei bruceiTrypanosomiasisTubulinVirulencearmbasebiophysical modelbiophysical propertiescell motilityforce feedbackinnovationinsightlaser tweezermechanical signalneglected tropical diseasesnoveloptical trapspathogenprogramsreconstitutionsingle moleculetherapeutic targettranscriptome sequencingtransmission processvector
项目摘要
Project Summary/Abstract
Motility is critical to the life cycle and pathogenicity of many parasites. While targeting motility is successful in
the treatment of multiple bacterial diseases, the motility and motile structures of eukaryotic pathogens remain
understudied and underexploited as treatment targets. Kinetoplastids, which are eukaryotic parasites that cause
multiple neglected tropical diseases, exhibit unique flagellar motility. Their flagella beat with a bending wave that
propagates from the tip to the base of their flagellum. This is unlike nearly all other eukaryotes, which beat from
the base to the tip. Because kinetoplastid flagellum bending wave propagation direction switches under certain
chemical and environmental conditions, and because the motile elements of kinetoplastid the flagellum are
nearly identical to all other eukaryotes, it is likely that unique regulation mechanisms innate to axonemal dyneins,
the molecular motors that drive flagellar motility, tune this tip-to-base motility. Testing this hypothesis requires
quantitative single-molecule biophysical characterization of kinetoplastid dynein regulation mechanisms.
The broad goal of this research program is to enable the development of novel treatments for kinetoplastid-
associated diseases that target the tip-to-base motility of kinetoplastid flagella. The specific aims of this project
focus on quantifying axonemal dynein regulation mechanisms from Trypanosoma brucei brucei, which will be
used as a model for kinetoplastid flagella. The aims include characterizing how force regulates the motility of
inner arm axonemal dyneins and how dynein-associated light chains and posttranslational modification to tubulin
regulate outer arm axonemal dyneins. This interdisciplinary project will take molecular biological (CRISPR/Cas9,
cloning, protein tagging), biochemical (in vitro reconstitutions, ATPase assays), genomic and proteomic (RNA-
Seq, mass spec), and biophysical (ultrafast dual-trap optical tweezers, total internal reflectance fluorescence
microscopy) experimental approaches. The collected data will be integrated and understood by making
quantitative biophysical models of axonemal dynein motility mechanisms. The expected outcome will be a
framework from which to develop pan-kinetoplastid drugs that target parasite motility. Successful completion of
the project will ultimately lead to a greater understanding of the fundamental mechanisms of pathogenic parasite
motility and could lead to novel treatments for African sleeping sickness, Chagas disease, and leishmaniasis.
项目摘要/摘要
运动对于许多寄生虫的生命周期和致病性至关重要。而定位运动成功
多种细菌疾病的治疗,真核病原体的运动性和运动结构仍然存在
被研究和不流失为治疗靶标。动力质体,是导致的真核生物寄生虫
多种被忽视的热带疾病表现出独特的鞭毛运动。他们的鞭毛用弯曲的波击败
从尖端到鞭毛的底部传播。这与几乎所有其他真核生物都不一样
尖端的基础。因为动力质体鞭毛弯曲波传播方向在某些
化学和环境条件,并且由于鞭毛的动力学元素是
与所有其他真核生物几乎相同,可能是独特的调节机制与轴突动力蛋白的先天机制,
驱动鞭毛运动的分子电动机,调整此尖端到基础运动。检验此假设需要
动力质体动力蛋白调节机制的定量单分子生物物理表征。
该研究计划的广泛目的是使动作塑料的新型治疗方法开发
靶向动作塑料鞭毛的尖端到基础运动的相关疾病。该项目的具体目的
专注于量化Brucei Brucei锥虫的轴突动力蛋白调节机制,这将是
用作动力质体鞭毛的模型。目的包括表征力如何调节运动能力
内臂轴突动力蛋白以及针对微管蛋白的脱氧蛋白相关的光链和翻译后如何修饰
调节外臂轴突动力蛋白。这个跨学科项目将采用分子生物学(CRISPR/CAS9,
克隆,蛋白质标记),生化(体外重构,ATPase分析),基因组和蛋白质组学(RNA-
SEQ,质量规格)和生物物理(超快双陷阱光学镊子,总内部反射率荧光
显微镜)实验方法。收集的数据将通过制作来集成和理解
轴突动力蛋白运动机制的定量生物物理模型。预期的结果将是
从中开发出靶向寄生虫运动的泛体形细胞药物的框架。成功完成
该项目最终将对致病寄生虫的基本机制有更深入的了解
运动能力,可能导致对非洲熟睡,查加斯病和利什曼病的新型治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Alper其他文献
Joshua Alper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Defining the mechanisms of kinetoplast DNA assembly by trypanosomal topoisomerase II for therapeutic target development
定义锥虫拓扑异构酶 II 的动质体 DNA 组装机制,用于治疗靶点开发
- 批准号:
10386849 - 财政年份:2021
- 资助金额:
$ 26.12万 - 项目类别: