Systems Biology Core
系统生物学核心
基本信息
- 批准号:10493266
- 负责人:
- 金额:$ 35.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Automobile DrivingBiochemical PathwayBioinformaticsBiologicalBiological ProcessCell physiologyCellsClinicalClinical DataClinical InvestigatorClinical ResearchComputational BiologyComputational TechniqueComputer ModelsDataData AnalysesData SetDiseaseDisease ProgressionDrug ToleranceEnsureEtiologyGene Expression RegulationGenerationsGenesGenetic TranscriptionHeterogeneityHumanImmunologistIndividualInvestigationLaboratory StudyLinkMachine LearningMetabolicMetabolismModelingModernizationMusMycobacterium tuberculosisOutcomePathway interactionsPhenotypePhysiologyProcessPropertyRecommendationRegulator GenesResearchResearch DesignResearch PersonnelResearch Project GrantsResolutionRoleSamplingSerum ProteinsService delivery modelServicesStandardizationSystemSystems BiologyTuberculosisValidationWorkYangbasebioinformatics networkbiological heterogeneitybiomarker signaturebiomedical data sciencecausal variantclinical phenotypecohortcomputerized data processingdesigndisease phenotypeexperimental analysisexperimental studyfallsinsightinterestknowledgebaselensmachine learning methodmetabolomicsmicrobialmolecular phenotypemultimodalitynetwork modelsnew technologypandemic diseasepathogenprogramsprotein profilingsimulationsingle-cell RNA sequencingstatistical and machine learningtranscriptome sequencingtransmission process
项目摘要
SYSTEMS BIOLOGY CORE ABSTRACT
This overall TBRU Program seeks to understand how both host and bacterial heterogeneity act together to
promote TB clinical phenotypes such as transmission, disease progression, and drug tolerance. These two
subjects (biological heterogeneity and clinical phenotypes) are emergent properties of intracellular networks and
of multicellular interactions, respectively, rendering this overall topic challenging to study by conventional
hypothesis-driven research approaches. Systems-level analyses are required in order to account for the
biological complexity imposed by cellular network and multicellular interactions and advanced computational
techniques are required to elucidate biological understanding from the increasingly large quantitative datasets
generated by modern advanced experimental platforms. The Systems Biology Core is designed to meet both of
these needs, providing advanced bioinformatics, biomedical data science, and network modeling analysis
services to support each Project in this Proposal. This Core is led by Drs. Evan Johnson, Shuyi Ma, and Jason
Yang, each with extensive subject-matter expertise in diverse computational and systems biology analytical
approaches, and each of whom actively collaborates with other investigators from this TBRU on diverse
tuberculosis research projects. The Systems Biology Core will aid in the standardized processing and analysis
of data from each Project, generation of experimentally testable hypotheses for each Project, and integrative
analyses of mechanisms connecting clinical phenotypes across Projects. Two key strengths of this Core that
differentiate it from other computational cores and that enable this TBRU to uniquely study clinical biospecimens
are: (i) the extensive expertise in using biomarker signatures such as PREDICT29 to detect incipient and
subclinical TB disease, expanding the range of clinical Mtb strains and host cells that can be studied; and (ii) the
extensive expertise in multiscale cellular network modeling and interpretable machine learning, expanding the
breadth and precision of biological hypotheses that can be generated from each set of experimental data.
Investigators in this TBRU have uniquely developed Mtb gene regulatory and metabolic network models, which
will be used by this Systems Biology Core to form condition-specific models of host and Mtb cell physiology
corresponding to experimental samples for each Project. These models will not only enable the Core to
deconvolve the large experimental datasets generated in this Program, but will also enable the Core to directly
predict causal gene regulatory and metabolic gene and pathway mechanisms that underlie each of the key
clinical phenotypes studied from these clinical samples: TB transmission, disease progression and drug
tolerance. These models and analyses will enable direct integration between Projects, allowing this TBRU to
determine how these clinical phenotypes may be mechanistically linked. Together, this Core will synergize with
each and with all Projects to mechanistically bridge host and pathogen heterogeneity with clinical outcomes.
系统生物学核心摘要
该总体TBRU计划旨在了解宿主和细菌异质性如何共同起作用
促进结核病临床表型,例如传播,疾病进展和药物耐受性。这两个
受试者(生物异质性和临床表型)是细胞内网络的新兴特性,
分别进行多细胞相互作用,使这一总体主题挑战于传统的研究
假设驱动的研究方法。需要进行系统级分析以说明
细胞网络和多细胞相互作用和高级计算施加的生物复杂性
需要技术来阐明越来越大的定量数据集中的生物学理解
由现代高级实验平台生成。系统生物学核心旨在满足这两种
这些需求,提供先进的生物信息学,生物医学数据科学和网络建模分析
在此提案中支持每个项目的服务。该核心由Drs领导。埃文·约翰逊(Evan Johnson),苏伊(Shuyi MA)和杰森(Jason)
Yang,每个都有广泛的主题和系统生物学分析方面的广泛主题专业知识
方法,每个人都积极与该TBRU的其他研究人员合作就多样化
结核病研究项目。系统生物学核心将有助于标准化的处理和分析
来自每个项目的数据,每个项目的实验可检验的假设以及综合性
对跨项目连接临床表型的机制的分析。这个核心的两个关键优势
将其与其他计算核心区分开,这使该TBRU能够唯一研究临床生物测量
是:(i)使用生物标志物特征(例如Predict29)检测初期和
亚临床结核病,扩大了可以研究的临床MTB菌株和宿主细胞的范围; (ii)
多尺度蜂窝网络建模和可解释的机器学习方面的广泛专业知识,扩展
可以从每组实验数据产生的生物学假设的广度和精度。
该TBRU中的研究人员已独特地开发了MTB基因调节和代谢网络模型,这些模型
该系统生物学核心将使用该系统核心形成宿主和MTB细胞生理的条件特异性模型
对应于每个项目的实验样本。这些模型不仅会使核心能够
解析此程序中生成的大型实验数据集,但也将使核心能够直接
预测因果基因调节基因和代谢基因以及途径机制,这些机制是每个关键的基础
从这些临床样本中研究的临床表型:结核病传播,疾病进展和药物
宽容。这些模型和分析将使项目之间的直接集成,从而使该TBRU能够
确定这些临床表型如何机械上的联系。在一起,这个核心将与
每个项目都可以机械地桥接宿主和病原体异质性,并具有临床结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Evan Johnson其他文献
William Evan Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Evan Johnson', 18)}}的其他基金
Microbiome-based biomarkers and models of lung cancer development and treatment
基于微生物组的肺癌发展和治疗的生物标志物和模型
- 批准号:
10739531 - 财政年份:2022
- 资助金额:
$ 35.78万 - 项目类别:
Microbiome-based biomarkers and models of lung cancer development and treatment
基于微生物组的肺癌发展和治疗的生物标志物和模型
- 批准号:
10366665 - 财政年份:2021
- 资助金额:
$ 35.78万 - 项目类别:
Signature of profiling and staging the progression of TB from infection to disease.
结核病从感染到疾病进展的特征分析和分期。
- 批准号:
10214482 - 财政年份:2020
- 资助金额:
$ 35.78万 - 项目类别:
Removing batch effects in genomic and epigenomic studies
消除基因组和表观基因组研究中的批次效应
- 批准号:
10155560 - 财政年份:2018
- 资助金额:
$ 35.78万 - 项目类别:
Removing batch effects in genomic and epigenomic studies
消除基因组和表观基因组研究中的批次效应
- 批准号:
9926913 - 财政年份:2018
- 资助金额:
$ 35.78万 - 项目类别:
Removing batch effects in genomic and epigenomic studies
消除基因组和表观基因组研究中的批次效应
- 批准号:
10739064 - 财政年份:2018
- 资助金额:
$ 35.78万 - 项目类别:
Removing batch effects in high-throughput biomedical studies
消除高通量生物医学研究中的批次效应
- 批准号:
10659898 - 财政年份:2018
- 资助金额:
$ 35.78万 - 项目类别:
An interactive analysis toolkit for single cell RNA-seq in cancer research
用于癌症研究中单细胞 RNA-seq 的交互式分析工具包
- 批准号:
9389818 - 财政年份:2017
- 资助金额:
$ 35.78万 - 项目类别:
相似国自然基金
水稻降解外源氰化物(CN-)生化反应“热区”定位及靶向调控CN-降解途径的机理研究
- 批准号:42277361
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
水稻降解外源氰化物(CN-)生化反应“热区”定位及靶向调控CN-降解途径的机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
影响生物大分子稳定的纳米载体中营养素吸收途径及效率的生化机制研究
- 批准号:31571891
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
冷藏杏果LOX代谢途径香气形成生化机制研究
- 批准号:31401556
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
小麦小分子RNA TaMIR167和TaMIR1139应答和抵御低磷逆境的分子机理
- 批准号:31371618
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Regulation of Protein Kinase C Theta by Phosphorylation
通过磷酸化调节蛋白激酶 C Theta
- 批准号:
10679152 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Alcohol Metabolism Disrupts Hepatic Thiol Redox Signaling and Control
酒精代谢破坏肝脏硫醇氧化还原信号和控制
- 批准号:
10585786 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Role of CRTC1-MAML2 in Salivary Mucoepidermoid Carcinoma Pathobiology
CRTC1-MAML2 在唾液腺粘液表皮样癌病理学中的作用
- 批准号:
10615108 - 财政年份:2022
- 资助金额:
$ 35.78万 - 项目类别: