Transformative Solutions for Reducing Frequent 911 Fall Calls in the Homes of Patients with Cognitive Impairments

用于减少认知障碍患者家中频繁拨打 911 跌倒电话的变革性解决方案

基本信息

  • 批准号:
    10493369
  • 负责人:
  • 金额:
    $ 24.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY There is a global upsurge of falls in older adults that impacts nearly every family across the world. Millions of older adults fall each year in the United States, leading to catastrophic injuries, deaths and soaring healthcare costs. Over the last decade, 911 fall calls have tripled while transport rates to the hospital after a fall have significantly decreased. Instead, 911 is increasingly used for lift assists (falls that do not result in transport). Deployment of emergency medical services for lift assists diverts care from higher acuity emergencies and costs more than 200 million dollars annually in the United States. There is a potentially powerful yet underutilized solution if we leverage the hidden opportunities of fall events, such as lift assists that do not result in catastrophic consequences, to activate prevention strategies. This study aims to develop a scalable strategy for early identification of individuals at high risk of falls and activate prevention solutions. We hypothesize that a systematic 911 fall call intake which has a broader concept of frailty, Frailty And Cognition+Environment (FaCE), will better account for the compounding and cascading nature of fall risks in older adults. At the completion of this project a scalable machine learning model which incorporates FaCE factors to predict high utilization of 911 for falls will be developed. In addition, we will characterize barriers and facilitators for adoption, implementation, and maintenance of fall prevention strategies in the home for patients with FaCE risk factors. This project will utilize a blend of systems science and community-based participatory research approaches and state of the art predictive analytics to elucidate the FaCE of falls, develop a scalable fall prevention solution that can be implemented nationwide and inform a larger-scale implementation trial for using 911 fall calls to activate effective fall prevention strategies in homes.
项目概要 全球老年人跌倒人数激增,几乎影响到世界各地的每个家庭。数百万 美国每年都有老年人跌倒,导致灾难性的伤害、死亡和医疗费用的飙升 成本。在过去十年中,911 跌倒电话增加了两倍,而跌倒后送往医院的交通费用也增加了 显着下降。相反,911 越来越多地用于升降辅助(不会导致运输的跌倒)。 部署电梯辅助紧急医疗服务可以将护理从更严重的紧急情况和成本中转移出来 美国每年收入超过2亿美元。有一个潜在的强大但未得到充分利用的 如果我们利用坠落事件的隐藏机会(例如不会导致灾难性的举升辅助),则可以找到解决方案 的后果,以启动预防策略。本研究旨在为早期制定可扩展的策略 识别跌倒高风险人群并启动预防解决方案。我们假设一个系统的 911 秋季电话接听具有更广泛的虚弱概念、虚弱与认知+环境 (FaCE),会更好 解释老年人跌倒风险的复合和级联性质。在这个项目完成时 一个可扩展的机器学习模型,该模型结合了 FaCE 因素来预测跌倒时 911 的高利用率 得到开发。此外,我们还将描述采用、实施和实施的障碍和促进因素。 针对具有 FaCE 危险因素的患者,维持家中跌倒预防策略。该项目将利用 系统科学和基于社区的参与性研究方法以及最先进的技术的融合 预测分析来阐明跌倒的 FaCE,开发可扩展的跌倒预防解决方案 全国范围内实施,并通知开展更大规模的试点,利用911电话激活有效 家庭跌倒预防策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carmen Quatman其他文献

Carmen Quatman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carmen Quatman', 18)}}的其他基金

Transformative Solutions for Reducing Frequent 911 Fall Calls in the Homes of Patients with Cognitive Impairments
用于减少认知障碍患者家中频繁拨打 911 跌倒电话的变革性解决方案
  • 批准号:
    10339728
  • 财政年份:
    2021
  • 资助金额:
    $ 24.24万
  • 项目类别:
First Responders: An Innovative Approach to Better Predict and Prevent Falls in Older Adults in the Community
急救人员:更好地预测和预防社区老年人跌倒的创新方法
  • 批准号:
    9751158
  • 财政年份:
    2018
  • 资助金额:
    $ 24.24万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Treating Respiratory Emergencies in Children (T-RECS) Feasibility Study
治疗儿童呼吸急症 (T-RECS) 可行性研究
  • 批准号:
    10370791
  • 财政年份:
    2023
  • 资助金额:
    $ 24.24万
  • 项目类别:
Reducing Ethnic-racial Disparities in Cardiac Arrest Survival Outcomes (RED-CASO)
减少心脏骤停生存结果的种族差异 (RED-CASO)
  • 批准号:
    10338932
  • 财政年份:
    2022
  • 资助金额:
    $ 24.24万
  • 项目类别:
Reducing Ethnic-racial Disparities in Cardiac Arrest Survival Outcomes (RED-CASO)
减少心脏骤停生存结果的种族差异 (RED-CASO)
  • 批准号:
    10598514
  • 财政年份:
    2022
  • 资助金额:
    $ 24.24万
  • 项目类别:
Transformative Solutions for Reducing Frequent 911 Fall Calls in the Homes of Patients with Cognitive Impairments
用于减少认知障碍患者家中频繁拨打 911 跌倒电话的变革性解决方案
  • 批准号:
    10339728
  • 财政年份:
    2021
  • 资助金额:
    $ 24.24万
  • 项目类别:
Phase IIB - Smart Eyewear Assistant for the Support of Seniors and their Caregivers in the Long-term Care Setting
第二阶段 - 智能眼镜助手,为长期护理环境中的老年人及其护理人员提供支持
  • 批准号:
    9750599
  • 财政年份:
    2014
  • 资助金额:
    $ 24.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了