Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
基本信息
- 批准号:10487570
- 负责人:
- 金额:$ 37.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectArchitectureAstrocytesBehaviorBioinformaticsBiologicalBiological AssayBiological ModelsBiologyBiomedical EngineeringBiomimeticsBlood capillariesCXCL12 geneCXCRCXCR4 geneCell CommunicationCell MaintenanceCellsCoculture TechniquesComplexDataDevelopmentDiseaseDisease ProgressionDoseEndothelial CellsExcisionExposure toFoundationsGeneticGenomicsGlioblastomaGliomaGoalsHomingHumanHypoxiaImmuneIn VitroIndividualInterruptionKnowledgeLigandsMediatingMethodsMicrofluidic MicrochipsMicrofluidicsMicrogliaModelingMolecularOncologyOperative Surgical ProceduresOrganoidsPathway interactionsPatientsPericytesPharmacologyPhysiologicalPositioning AttributePrediction of Response to TherapyPropertyRadiationRadiation therapyRecurrenceResearch DesignResistanceResolutionRoleSamplingShelter facilitySiteSliceSpecificityTimeTissue EngineeringTissuesTumor TissueTumorigenicityValidationbasecell behaviorcell typechemotherapeutic agentconventional therapyendothelial stem cellgenotoxicityin vivoin vivo Modelinsightinterdisciplinary approachirradiationmouse modelmultidisciplinaryneoplastic cellnovelradiation resistancereceptorresponseself-renewalsingle-cell RNA sequencingsmall hairpin RNAstemstem cell biologystem cell proliferationstem cellsstemnesstargeted treatmenttherapy resistantthree dimensional cell culturethree-dimensional modelingtranscriptome sequencingtranscriptomicstreatment responsetumortumor microenvironment
项目摘要
Summary
One of the critical challenges in the treatment of Glioblastoma (GBM) is the presence of highly resistant cells
with stem-like properties, called glioma stem cells (GSCs), that evade surgical resection, resist conventional
treatments and are primarily responsible for tumor recurrence. The perivascular niche within the GBM tumor
microenvironment (TME) has been well recognized as a critical site that shelters GSCs and promotes their
stemness, invasion, and therapeutic resistance.
Extensive studies from others and our lab, using in vitro and in vivo models, have demonstrated that the
crosstalk between the endothelial cells (ECs) and GSCs regulates GSC proliferation, tumorigenicity and self-
renewal capacity. However, the perivascular niche is a complex microenvironment comprised not only of ECs
but multiple other cell types including astrocytes, pericytes, and immune cells. How the cell-cell interactions
between the various cellular components of the perivascular niche modulate GSC behavior (proliferation vs.
quiescence and invasion vs. homing) and therapy resistance is poorly understood. To address these unmet
biological knowledge gaps, there is a critical need for sophisticated and more realistic ex vivo tumor models that
better recapitulate the physiological complexities of the GBM perivascular niche to advance our fundamental
understanding of the biology of the disease and predict therapeutic responses.
Recently, we have established and validated an on-chip microfluidic tumor model of GBM, with a unique 3D
organotypic architecture, to study the influence of the perivascular niche on GSC invasion. We have shown that
co-culturing of astrocytes enhances EC-induced invasion of GSCs, where RNA-seq analysis of mono-culture vs.
tri-culture provided a mechanistic insight into the receptor-ligand pairs that mediate the interactions between
cells. Based on these foundational developments, in this study our goal is to develop an ex vivo tumor model of
GBM, bioinspired from the native perivascular niche, with patient-derived cells to dissect the role of cellular
components within the niche on GSC biology and response to treatment at single cell resolution.
In Aim 1, our objective is to determine the influence of the key cell types within the perivascular niche on
GSC-EC interactions. In Aim 2, we plan to mechanistically unveil the impact of radiation treatment on GSCs-
perivascular niche interactions, while in Aim 3, we will blunt invasion and sensitize GSCs through disruption of
niche-tumor cell interactions. Our study design uniquely employs an interdisciplinary approach including
microengineering of a bioinspired ex vivo tumor model, single-cell level resolution analysis, molecular-level
transcriptomics, and validation using ex vivo patient tumor samples. Successful completion of these studies will
not only further our understanding of the interactions of GSCs with the perivascular niche but will also facilitate
identification of novel targets to block disease progression.
概括
治疗胶质母细胞瘤(GBM)的关键挑战之一是存在高度抗性细胞
具有茎状特性,称为神经胶质瘤干细胞(GSC),逃避手术切除,抵抗常规
治疗,主要导致肿瘤复发。 GBM肿瘤中的血管周期生阵
微环境(TME)已被广泛认为是庇护GSC并促进其他们的关键地点
干性,入侵和治疗性抗性。
使用体外和体内模型的他人和我们的实验室的广泛研究表明,
内皮细胞(EC)和GSC之间的串扰调节GSC增殖,肿瘤性和自我
更新能力。然而,血管周生位是一种复杂的微环境,不仅由EC组成
但是其他多种细胞类型,包括星形胶质细胞,周细胞和免疫细胞。细胞细胞相互作用如何
在血管周围壁裂调节GSC行为的各种细胞成分之间(增殖与。
静止和入侵与归巢)和抗治疗性的理解很少。解决这些尚未满足
生物知识差距,对复杂和更现实的离体肿瘤模型的迫切需要
更好地概括了GBM周血管生态位的生理复杂性,以促进我们的基本
了解该疾病的生物学并预测治疗反应。
最近,我们建立并验证了GBM的片上微流体肿瘤模型,具有独特的3D
细胞型结构,研究血管周期壁re对GSC入侵的影响。我们已经表明
星形胶质细胞的共培养增强了EC诱导的GSC侵袭,其中RNA-seq分析了单培养与。
三文化提供了对受体配体对的机械洞察,以介导
细胞。基于这些基本发展,在这项研究中,我们的目标是开发一个体内肿瘤模型
GBM,从天然血管周围的生物位生物启动,患者衍生细胞剖析细胞的作用
小众在GSC生物学中的成分以及单细胞分辨率下对治疗的反应。
在AIM 1中,我们的目标是确定血管周期内关键细胞类型的影响
GSC-EC相互作用。在AIM 2中,我们计划机械地公布辐射处理对GSC的影响 -
血管周围的小众相互作用,而在AIM 3中,我们将通过中断攻击GSC并使GSC敏感
利基 - 肿瘤细胞相互作用。我们的研究设计独特地采用了跨学科的方法,包括
生物启发的离体肿瘤模型的微工程,单细胞水平分析,分子级
转录组学和使用离体患者肿瘤样品进行验证。这些研究的成功完成将
不仅我们进一步了解GSC与周围的小众的相互作用,还将有助于
鉴定新的目标以阻止疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Nikkhah其他文献
Mehdi Nikkhah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehdi Nikkhah', 18)}}的其他基金
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10665738 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10279283 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
MICROFABRICATED 3D VASCULARIZED CARDIAC TISSUE CONSTRUCTS
微型 3D 血管化心脏组织结构
- 批准号:
8526165 - 财政年份:2013
- 资助金额:
$ 37.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别: