A Robust, Secure Framework to Effortlessly Bind Distributed Databases and Analysis Tools into Tightly Integrated Translational Drug Discovery Computational Platforms
一个强大、安全的框架,可以轻松地将分布式数据库和分析工具绑定到紧密集成的转化药物发现计算平台中
基本信息
- 批准号:10484172
- 负责人:
- 金额:$ 85.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAgeBindingBiologicalBusinessesCellular PhoneChemicalsCloud ServiceComputational algorithmComputer softwareCustomDataData AnalysesData SetData SourcesDatabasesDevelopmentDiseaseDistributed DatabasesEffectivenessEnvironmentInformaticsIntuitionMarketingMethodologyModelingModernizationPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePrivatizationProblem SolvingProcessProviderPubChemPublic DomainsResearchResourcesRunningScientistSecureSecuritySourceSpecific qualifier valueSystemTechniquesTechnologyTestingTranslationsUnited States National Institutes of HealthVendorVisualVisualizationanalytical toolchemical associationcloud basedcomputational platformcomputer frameworkcomputerized toolsdata accessdata exchangedata repositorydata resourcedistributed datadrug discoveryflexibilityimprovedinnovationinnovative technologieslarge datasetsmultiple data sourcesnovelopen sourceoperationpreventreal world applicationtoolvirtual environment
项目摘要
PROJECT SUMMARY
Collaborative Drug Discovery, Inc. (CDD) proposes to develop Cloud Workspaces for Drug Discovery – a
novel informatics framework that will enable scientists engaged in drug discovery and translation to effort-
lessly, robustly, and securely integrate disparate databases and computational tools distributed across multiple
systems and vendors into highly-efficient, custom-tailored computational workflows. Our innovative technol-
ogy will solve a critical problem that hinders drug discovery and translation efforts: scientists in this field typi-
cally need to combine chemical and biological data from several sources, run them through multiple software
packages that specialize in different types of analyses and visualization, then ideally store the results of the
analyses together with their underlying experimental data. Today, this type of integration is difficult and
expensive to accomplish and typically fragile, creating a large barrier to (i) exploiting the rapidly increasing
number of high-quality public-access data repositories and (ii) evaluating promising new analytical tools and
strategies. Monolithic platforms offer to solve this problem by bringing everything together under one roof, but
they are extremely expensive and they limit flexibility: no single platform can offer every capability. The alter-
native approach – stringing together discrete resources – evolved during the era of desktop computing and
does not translate well to modern cloud-based workflows and in particular to the challenges of performing
computationally intensive operations that require combining large datasets distributed across remote systems.
Cloud Workspaces (CW) aims to combine the strengths and avoid the weaknesses of these two extremes. CW
will in essence allow users to easily create their own individualized cloud-hosted solutions tailored to their
unique requirements and workflows. Our approach offers the performance, robustness, and ease of use of a
monolithic software solution, but without the associated inflexibility and vendor lock in. It offers the flexibility
and openness of combining discrete resources, but without the associated integration challenges and fragility,
and it advances the pipelining approach to embrace cloud-based models and to encompass distributed data
resources without compromising performance or security. In Phase 1 we proved that we could robustly and
efficiently synchronize biological and chemical data (transferring only new or modified data while retaining
correct association of chemical identifiers) between the CW container environment and remote databases,
which was a challenging but essential prerequisite for our concept. In Phase 2 we will complete development of
CW and demonstrate its effectiveness with multiple real-world applications together with software application
partners and beta customer end users. The market for the technology ranges from academics to small and
medium size companies to the large pharmaceutical firms.
项目概要
Collaborative Drug Discovery, Inc. (CDD) 提议开发药物发现云工作空间 –
新颖的信息学框架将使科学家能够从事药物发现和翻译工作-
更少、稳健、安全地集成分布在多个领域的不同数据库和计算工具
系统和供应商进入高效、定制的计算工作流程。
ogy 将解决阻碍药物发现和转化工作的关键问题:该领域的科学家通常
特别需要结合多个来源的化学和生物数据,通过多个软件运行它们
专门从事不同类型的分析和可视化的软件包,然后理想地存储结果
如今,这种类型的整合非常困难且困难。
实现起来成本高昂且通常很脆弱,这对 (i) 利用快速增长的资源造成了巨大障碍
高质量的公共访问数据存储库的数量,以及(ii)评估有前途的新分析工具和
整体式平台可以通过将所有内容集中在一个屋檐下来解决这一问题,但是。
它们非常昂贵并且限制了灵活性:没有一个平台可以提供所有功能。
本机方法(将离散资源串在一起)是在桌面计算时代发展起来的
不能很好地适应现代基于云的工作流程,特别是执行的挑战
需要组合分布在远程系统上的大型数据集的计算密集型操作。
云工作空间 (CW) 旨在结合这两个极端的优点并避免其缺点。
从本质上讲,用户可以轻松创建适合自己的个性化云托管解决方案
我们的方法提供了性能、稳健性和易用性。
整体软件解决方案,但没有相关的不灵活性和供应商锁定。它提供了灵活性
以及组合离散资源的开放性,但没有相关的集成挑战和脆弱性,
它推进了管道方法以采用基于云的模型并包含分布式数据
在不影响性能或安全性的情况下,我们证明了我们可以稳健地利用资源。
有效同步生物和化学数据(仅传输新的或修改的数据,同时保留
化学标识符的正确关联) CW 容器环境和远程数据库之间,
这对于我们的概念来说是一个具有挑战性但必不可少的先决条件,我们将在第二阶段完成开发。
CW 并通过多个实际应用程序和软件应用程序证明其有效性
该技术的市场范围从学术界到小型和小型企业。
从中型公司到大型制药公司。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY A BUNIN其他文献
BARRY A BUNIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY A BUNIN', 18)}}的其他基金
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10357906 - 财政年份:2020
- 资助金额:
$ 85.49万 - 项目类别:
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10569639 - 财政年份:2020
- 资助金额:
$ 85.49万 - 项目类别:
Intelligent Chemical Structure Browser for Drug Discovery and Optimization
用于药物发现和优化的智能化学结构浏览器
- 批准号:
10241834 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
Digital representation of chemical mixtures to aid drug discovery and formulation
化学混合物的数字表示以帮助药物发现和配制
- 批准号:
9902210 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
A Robust, Secure Framework to Effortlessly Bind Distributed Databases and Analysis Tools into Tightly Integrated Translational Drug Discovery Computational Platforms
一个强大、安全的框架,可以轻松地将分布式数据库和分析工具绑定到紧密集成的转化药物发现计算平台中
- 批准号:
10685358 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
Intelligent Chemical Structure Browser for Drug Discovery and Optimization
用于药物发现和优化的智能化学结构浏览器
- 批准号:
10386918 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
Novel deep learning strategy to better predict pharmacological properties of candidate drugs and focus discovery efforts
新颖的深度学习策略可以更好地预测候选药物的药理学特性并集中发现工作
- 批准号:
10133177 - 财政年份:2018
- 资助金额:
$ 85.49万 - 项目类别:
Novel deep learning strategy to better predict pharmacological properties of candidate drugs and focus discovery efforts
新颖的深度学习策略可以更好地预测候选药物的药理学特性并集中发现工作
- 批准号:
10004481 - 财政年份:2018
- 资助金额:
$ 85.49万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 85.49万 - 项目类别:
Increasing initiation of evidence-based weight loss treatment
越来越多地开始开展循证减肥治疗
- 批准号:
10735201 - 财政年份:2023
- 资助金额:
$ 85.49万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 85.49万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 85.49万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 85.49万 - 项目类别: