Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
基本信息
- 批准号:10483152
- 负责人:
- 金额:$ 78.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAffectAllelesBase PairingBenchmarkingBiologicalBiological AssayBiologyCRISPR screenCatalogsCell physiologyCellsChIP-seqChromatinCodeCollaborationsComplexComputer softwareComputing MethodologiesDataData SetDevelopmentDiseaseDisease PathwayDrug TargetingEpigenetic ProcessGene Expression RegulationGene FrequencyGenesGeneticGenetic TranscriptionGenetic VariationGenetic studyGenomic approachGenomicsGenotypeGoalsGoldHeritabilityHeterogeneityHi-CHuman GeneticsIndividualLettersLightLinkLocalized DiseaseMendelian disorderMethodsModelingMolecularMutationNetwork-basedNucleic Acid Regulatory SequencesParental AgesPathogenicityPathway interactionsPhenotypePopulation GeneticsPricePublicationsRare DiseasesRecording of previous eventsRecordsRegulatory ElementResearch PersonnelResolutionSamplingSourceTestingTherapeuticTimeUntranslated RNAValidationVariantbasecausal variantcell typeclinically actionablecohortdata exchangedata integrationde novo mutationdifferential expressiondisorder riskflexibilityfunctional genomicsgenetic variantgenome sequencinggenome wide association studygenome-widegenomic datahuman diseaseimprovedinsightinterestlarge scale datapressureprogramsrare variantrisk variantsingle cell analysissingle-cell RNA sequencingsuccesstherapeutic targettooltraittranscription factortranscriptomicswhole genome
项目摘要
Project Summary
Over the past decade, genome-wide association studies have discovered complex disease-associated genetic
variants while at the same time whole genome sequencing studies have been identifying risk alleles for
Mendelian and complex diseases. These variants have the potential to shed light on human disease
mechanisms. But there are several important challenges. More than 90% of complex disease associated
variants lie within non-coding regions, posing a challenge of identifying relevant cell types and cell states,
target genes, and regulatory mechanisms. The important task of linking these variants to genes itself can be
challenging. In addition, as our ability to identify de novo and rare mutations for complex and Mendelian
diseases is rapidly expanding, defining the function of those de novo alleles, which genes and pathways they
affect remains uncertain.
To address these challenges, we will predict the functional impact of disease risk variants at the level of
individual variants, individual genes, and pathways to elucidate disease biology. In all aims of this proposal we
will utilize IGVF functional genomic data. In Aim 1, we will predict the regulatory potential of variants in
disease-critical cell types/states at a single base-pair resolution. We will identify pathogenic cell-states by
analyzing single cell transcriptional data sets in a disease context, and then integrate single-cell epigenetic
data to define the regulatory landscape of these rare disease cell-states. These regulatory regions identified in
this analysis can be used to annotate variants for potential function. Finally, to understand functionality of
specific variants in regulatory regions, we quantify selective pressure using large-scale whole genome
sequencing data. In Aim 2, we will predict functional impacts of genes by effectively linking variants to genes.
Defining causal diseases genes is critically important since they may be important for therapeutic targeting. We
develop strategies to use genetic data and functional genomic data to predict downstream genes, and evaluate
these methods with a set of gold-standard casual genes from Mendelian phenotypes. In Aim 3, we focus on
rare and de novo mutations with large effect sizes. Here we recognize that predicting the function of these
alleles requires an understanding of the pathways they effect, models to connect rare non-coding variants to
genes, and strategies to define functionality of the variants based on population genetic parameters. In Aim 4,
we develop a framework to synergize with the IGVF consortium to advance consortium goals, outlining our
integration plan and flexible programmatic framework.
The proposal represents a collaboration between Drs. Soumya Raychaudhuri, Alkes Price, and Shamil
Sunyaev, bringing analytical expertise across functional genomics, single-cell data integration, and population
genetics. These investigators have a history of successful collaborations with a strong publication records
integrating functional genomics data with GWAS and sequencing studies to uncover disease mechanisms.
项目摘要
在过去的十年中,全基因组关联研究发现了与疾病相关的复杂遗传
同时,整个基因组测序研究的变异已经确定了风险等位基因
孟德尔和复杂疾病。这些变体有可能阐明人类疾病
机制。但是有一些重要的挑战。超过90%的复杂疾病相关
变体位于非编码区域内,提出了识别相关细胞类型和细胞状态的挑战,
靶基因和调节机制。将这些变体与基因本身联系起来的重要任务可能是
具有挑战性的。另外,作为我们识别从头识别的能力和罕见的复合物和孟德尔人的突变
疾病正在迅速扩展,定义了这些从头等位基因的功能,这些基因和途径是
情感仍然不确定。
为了应对这些挑战,我们将预测疾病风险变异的功能影响
单个变体,个体基因和阐明疾病生物学的途径。在这个建议的所有目标中,我们
将利用IGVF功能基因组数据。在AIM 1中,我们将预测变体的调节潜力
至关疾病的细胞类型/状态以单基对分辨率。我们将通过
在疾病环境中分析单细胞转录数据集,然后整合单细胞表观遗传学
确定这些罕见疾病细胞园的调节景观的数据。这些监管区域在
该分析可用于注释潜在功能的变体。最后,了解
调节区域中的特定变体,我们使用大规模的整个基因组来量化选择性压力
测序数据。在AIM 2中,我们将通过有效将变体与基因联系起来来预测基因的功能影响。
定义因果疾病基因至关重要,因为它们对于治疗靶向可能很重要。我们
制定使用遗传数据和功能基因组数据来预测下游基因的策略,并评估
这些方法具有来自孟德尔表型的一组金标准的休闲基因。在AIM 3中,我们专注于
稀有和从头突变具有较大效应大小的突变。在这里,我们认识到预测这些功能
等位基因需要了解其影响的途径,将稀有非编码变体连接到
基因以及基于种群遗传参数定义变体功能的策略。在AIM 4中,
我们开发了一个框架以与IGVF财团协同作用以促进联盟目标,概述了我们
集成计划和灵活的程序化框架。
该提案代表了Drs之间的合作。 Soumya Raychaudhuri,Alkes Price和Shamil
Sunyaev,在功能基因组学,单细胞数据集成和人群中带来了分析专业知识
遗传学。这些调查人员有与强大的出版记录成功合作的历史
将功能基因组学数据与GWAS和测序研究整合到发现疾病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALKES L PRICE其他文献
ALKES L PRICE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALKES L PRICE', 18)}}的其他基金
Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
- 批准号:
10296867 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
- 批准号:
10647775 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Detecting natural selection by comparing African-ancestry populations
通过比较非洲血统人群来检测自然选择
- 批准号:
8242257 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Heritability of complex traits via IBD and IBS in related and unrelated individua
通过 IBD 和 IBS 在相关和无关个体中实现复杂性状的遗传力
- 批准号:
8444904 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8476220 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8217393 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Detecting natural selection by comparing African-ancestry populations
通过比较非洲血统人群来检测自然选择
- 批准号:
8442247 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8685259 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Heritability of complex traits via IBD and IBS in related and unrelated individua
通过 IBD 和 IBS 在相关和无关个体中实现复杂性状的遗传力
- 批准号:
8599787 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Methods for Genome-wide Association Studies in Admixed Populations
混合人群全基因组关联研究的方法
- 批准号:
8281417 - 财政年份:2011
- 资助金额:
$ 78.89万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of androgen-dependent Wolffian duct differentiation
雄激素依赖性沃尔夫管分化机制
- 批准号:
10633606 - 财政年份:2023
- 资助金额:
$ 78.89万 - 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 78.89万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 78.89万 - 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
- 批准号:
10581192 - 财政年份:2023
- 资助金额:
$ 78.89万 - 项目类别: