Next generation anti-cancer drugdelivering cement for bone metastasis patients
用于骨转移患者的下一代抗癌药物输送水泥
基本信息
- 批准号:10483954
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlpha ParticlesAmericanAntineoplastic AgentsAntitumor Drug Screening AssaysAreaBindingBone GrowthBone PainBone RegenerationBone SubstitutesBone TissueCancer EtiologyCancer PatientCell SurvivalCessation of lifeClinicClinicalDataDisseminated Malignant NeoplasmDoseDrug Delivery SystemsDrug toxicityEngineeringFDA approvedFood and Drug Administration Drug ApprovalFormulationFractureHealthHospitalsHumanHuman bodyHydroxyapatitesIn VitroInjectableLicensingLifeMalignant NeoplasmsMechanicsMedicalMedical DeviceMetastatic Neoplasm to the BoneMethodsMineralsMissionMovementNeoplasm MetastasisNotificationOrganOsteoclastsOsteolysisOsteolyticOsteoporosisPaget&aposs DiseasePainParticle SizePathway interactionsPatientsPersonsPharmaceutical PreparationsPlexiglassPolymethyl MethacrylatePositioning AttributePreclinical TestingPreparationProcessProductionQuality of lifeRecovery SupportRegenerative capacityResearchRisk AssessmentSerious Adverse EventSiteSmall Business Technology Transfer ResearchStandardizationSterilizationSurfaceSystemTechnologyTherapeuticTimeToxic effectTranslatingTranslationsUnited States National Institutes of HealthValidationWomanagedanti-cancerbasebiomaterial compatibilitybonebone fragilitybone healthcalcium phosphatecancer cellcommercializationdevelopmental toxicityeffective therapyefficacy testingexperiencehealinghigh riskimplant materialin vivoin vivo Modelinnovationinventionmedical schoolsmeetingsmid-career facultymimeticsmineralizationminimally invasivemonomernanomedicinenanoparticleneoplastic cellnext generationnovelpain reductionparticlepolymerizationpre-clinicalpreventprofessorprogramsprototypereproductivescale upside effectsystemic toxicitytargeted treatmenttumor progression
项目摘要
Abstract
Our mission is to develop an innovative anti-cancer drug delivering bone cement for bone metastasis patients,
which can be injected into metastasis-caused bone degeneration sites in a minimally invasive manner, to regress
cancer, regenerate bone, and stop the pain. Metastasis is the main cause of cancer death. Bone is one of the
most frequent cancer metastatic sites. About 350,000 Americans die due to bone metastasis each year.
Metastasized cancer cells can extensively destroy the bone by over-activating osteoclasts. Fragilized bone easily
gets fractured by simple movement, causing intolerable pain and immobility to bone metastasis patients. As a
result, the life quality of bone metastasis patients is extremely poor.
Bone metastasis is currently incurable. In the clinic, polymethyl methacrylate (PMMA) cement is
dominantly used to instantly stabilize the metastasis-caused bone fractures of dying cancer patients to reduce
their devastating pain, based on its excellent mechanical strength. However, PMMA is plexiglass that does not
regenerate bone and has a high risk of serious adverse events. As cancer therapeutics are rapidly advancing,
bone metastasis patients are living longer than before. Therefore, there is an urgent and unmet medical need
for an advanced cement that can support the recovery of cancer patient health. To overcome the drawbacks of
PMMA cement, calcium phosphate cement has been used for bone regeneration based on its similar
composition to native bone. However, existing calcium phosphate cement products burst release drugs and none
of them received FDA approval for drug delivery purposes.
To solve this important medical problem, we aim to develop a paradigm-shifting “healing cement” that
can deliver anti-cancer drugs and regenerate bone by using innovative whitlockite material. Whitlockite is the
second most abundant bone mineral in the human body, which exists with a higher ratio in younger aged people
and earlier stage of mineralization. Our team has developed a large scale, facile synthetic method of whitlockite
and showed its superior bone regeneration capacity and mechanical strength compared to existing calcium
phosphate bone substitute products in the clinic. Recently, excitingly, we advanced the synthetic process of
whitlockite and developed an injectable whitlockite-based cement. Strikingly, this advanced whitlockite-based
cement could load a significantly large quantity of drugs and release them in a sustained manner. Based on this
innovative invention, through this NIH STTR program, we aim to manufacture the first anti-cancer drug delivering
bone cement product and translate it into the clinic to benefit bone metastasis patients. We envision that our
innovative anti-cancer drug delivering whitlockite-based bone cement product will provide a breakthrough to
overcome bone metastasis. We also expect this whitlockite-based bone cement will significantly reduce the side
effects of anti-cancer drugs on other organs by enabling targeted therapy to the bone.
抽象的
我们的使命是开发一种创新的抗癌药物,为骨转移患者提供骨水泥,
可以以微创的方式注入转移引起的骨变性位点
癌症,再生骨骼并阻止疼痛。转移是癌症死亡的主要原因。骨头是
最常见的癌症转移性部位。每年大约有35万美国人死于骨转移。
转移的癌细胞可以通过过度激活破骨细胞有效地破坏骨骼。容易脆弱的骨头
通过简单运动骨折,导致腹部疼痛和对骨转移患者的动静。作为
结果,骨转移患者的寿命质量极为差。
骨转移目前无法治愈。在诊所中,聚合物甲基丙烯酸甲酯(PMMA)水泥为
主要用于立即稳定垂死的癌症患者的转移引起的骨骼碎片以减少
根据其出色的机械强度,它们的毁灭性疼痛。但是,PMMA是没有的有机玻璃
再生骨骼,并具有严重不良事件的高风险。随着癌症疗法正在迅速发展,
骨转移患者的寿命比以前更长。因此,有紧急且未满足的医疗需求
对于可以支持癌症患者健康恢复的高级水泥。克服
PMMA水泥,磷酸钙水泥已根据其相似的
天然骨骼的组成。但是,现有的磷酸钙水泥产物破裂释放药物,无
他们中的用于药物输送目的获得了FDA批准。
为了解决这个重要的医疗问题,我们旨在开发一种范式转移的“治愈水泥”
可以通过使用创新的Whitloctite材料提供抗癌药物并再生骨骼。 Whitlockite是
人体中第二大最丰富的骨矿物质,年轻人的比例更高
以及矿化的早期阶段。我们的团队已经开发了一种大规模的,轻松的惠特洛基的合成方法
并显示出与现有钙相比的优势骨再生能力和机械强度
诊所中的磷酸盐替代产物。最近,令人兴奋的是,我们提出了合成过程
Whitlockite并开发了可注射的基于惠特洛锁的水泥。令人惊讶的是,这个高级基于惠特洛基石
水泥可以加载大量的药物,并以持续的方式释放它们。基于此
创新意图,通过这个NIH STTR计划,我们旨在生产第一个反癌药物
骨水泥产物并将其转化为诊所以使骨转移患者受益。我们设想我们的
创新的抗癌药物递送基于惠特洛锁的骨水泥产品将为
克服骨转移。我们还希望这种基于whitlockite的骨水泥将大大减少侧面
抗癌药对其他器官的影响,通过对骨骼进行靶向疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hae Lin Jang其他文献
Hae Lin Jang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hae Lin Jang', 18)}}的其他基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Nanostructured degradable bone cement for delivering novel antibiotics
用于输送新型抗生素的纳米结构可降解骨水泥
- 批准号:
10717850 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Whitlockite nanoparticle-based immunotherapy for bone metastasis
基于白磷矿纳米颗粒的骨转移免疫疗法
- 批准号:
10616475 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Whitlockite nanoparticle-based immunotherapy for bone metastasis
基于白磷矿纳米颗粒的骨转移免疫疗法
- 批准号:
10370370 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
基于π-d杂化策略的铁磁金属颗粒膜界面磁耦合及反常霍尔效应研究
- 批准号:12304134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨排放控制削减细颗粒物的有效性阈值动态变化研究
- 批准号:42307151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生物油活化的橡胶颗粒-沥青界面行为及体系稳定性研究
- 批准号:52308430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Exposure to Ambient Air Pollutants, Circulating microRNAs, and Hepatic Fat Fraction Among Young Adults
年轻人接触环境空气污染物、循环 microRNA 和肝脂肪分数
- 批准号:
10537895 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Lp(a) and Oxidized Phospholipids - Impact of Diets
Lp(a) 和氧化磷脂 - 饮食的影响
- 批准号:
10367048 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Remediation of Perfluorinated Chemicals in Water Using Novel High-Affinity Polymer Adsorbents
使用新型高亲和力聚合物吸附剂修复水中的全氟化学品
- 批准号:
10005431 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Remediation of Perfluorinated Chemicals in Water Using Novel High-Affinity Polymer Adsorbents
使用新型高亲和力聚合物吸附剂修复水中的全氟化学品
- 批准号:
9909672 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别: